Интернет-журнал дачника. Сад и огород своими руками

Из чего сделан экзоскелет. Новый экзоскелет в виде ботинок: работают автономно и облегчают движение! Экзоскелет своими руками: примерная схема

Экзоскелеты помогающие парализованным ходить, делающие тяжёлаю работу лёгкой, защищающие солдат на поле боя и дающие нам суперспособности.

1. Activelink Power Loader

Получивший своё имя в честь знаменитого экзоскелета из фильма «Чужие», Activelink Power Loader разработан, для того, чтобы облегчить тяжелый ручной труд владельца вне зависимости от его возраста, пола и комплекции, и призван «создать общество без ограничений» согласно пресс релизу Activelink, дочерней компании известного японского производителя электроники Panasonic.

2. HAL


HAL (Hybrid Assistive Limb) механический экзоскелет из Японии, разработанный Cyberdine Inc . (да-да, прям как те ребята, из-за которых всё началось в Терминаторе), был создан как прототип в 1997 году, а сейчас используется в японских госпиталях, для помощи тяжелобольным в их повседневной деятельности. Также известно, что HAL использовался японскими строителями и даже спасателями во время ликвидации аварии на Фукусиме-1 в 2011.

3. Ekso Bionics


14. Проект «Walk Again»

Чемпионат мира по футболу 2014 в Бразилии открывал Жулиано Пинто, парализованный ниже пояса, ему было предоставлено право сделать первый удар по мячу Кубка мира. Это стало возможным благодаря экзоскелету, подключенного напрямую к его мозгу, разработанному Университетом Дьюка. Это событие часть проекта «Walk Again», созданного командой из 150 человек во главе с известным неврологом и ведущей фигурой в области мозго-машинных интерфейсов, доктором Мигелем Николелисом. Жулиано Пинто просто думал о том, что хочет пнуть мяч, экзоскелет фиксировал активность мозга и активировал необходимые для движения механизмы.

Экзоскелет своими руками

Как можно самостоятельно реализовать экзоскелет.

Чтобы он был дико силён следует как я понимаю остановиться на гидравлике.
Чтобы работала гидравлическая система нужны:

-прочный и подвижный каркас
-минимально необходимый набор гидравлических поршней (назову их "мышцами")
-два вакуумных насоса, две барокамеры с системой клапанов соединённые трубкой.
-трубки, способные выдержать высокое давление.
-источник питания экзоскелета
Чтобы управлять системой клапанов:
-Небольшой дохлый компьютер
-около 30 датчиков с семью(например) степенями пропорциональными степеням открытости клапанов
-специальная программа способная считать состояния датчиков и отправить соответствующие команды клапанам.

Для чего всё это необходимо:

-"мышцы" и каркас собственно это весь опорнодвигательный аппарат.
-вакуумные насосы. почему два? чтобы один увеличивал давление в барокамерах трубах и мышцах, а второй уменьшал.
-барокамеры соединённые трубкой. в одной давление увеличивать во второй понижать, а трубку оснастить клапаном открывающимися только в двух случаях:выравнивание давления, обеспечение холостого хода жидкости.
-клапаны. это простая и эффективная система управления, которая будет зависеть от давления в барокамере и управления компьютером. повышая давление в барокамере открыв клапаны каналов "напрягаемых мышц" позволит осуществлять те или иные действия повышая давление на гидравлические поршни, двигая части скелета(каркаса).

Датчики, почему примерно тридцать?по две на стопы, по три на ноги, по шесть на руки и 4 для спины. как их расположить? против движения конечностей. чтобы выдвигаемая вперёд нога давила изнутри на экзоскелет и на датчик на внутренней его стороне. далее объясню почему именно так.
-компьютер с программой. главная задача компьютера и программы сделать так, чтобы датчики не испытывали давления, тогда человек внутри не будет ощущать лишнего сопротивления экзоскелета, который будет стремиться повторить движения человека не зависимо от активности нервов, мышц или ещё каких биометрических показателей, тем самым позволит использовать гораздо более дешёвые датчики, чем к примеру в высокотехнологичных экзоскелетах. сигналы датчиков для компьютера должны быть разделены на две группы:с безусловным управлением гидравлической системой и принимаемые только при условии что противоположный ему датчик с безусловным управлением не испытывает давления. Эта реализация удержит ногу упёртую коленом в землю от автоматического разгибания если человек сам её не разогнёт. Но для этого прийдётся человеку внутри экзоскелета приподнимать ногу от земли(либо нужно программно снизить чувствительность датчиков срабатывающих с условием). На примере ноги: датчики с безусловным сигналом расположить с фронтальной стороны, с безусловным с тыльной. сами представьте как будет осуществляться движение. при сгибании ноги человеком, нога экзоскелета согнётся даже если весь вес человека будет на датчиках разгибающих ногу. Здесь при помощи акселерометра(либо другого аппарата аналогичного вестибулярному) программно можно задать изменение безусловности сигналов датчиков в зависимости от положения тела в пространстве, исключив скрючивание экзоскелета при падении на спину.

Далее руки-для увеличения силы сделать трёхпалыми, прочными, можно совместить гидравлику и металлический трос. рука должна быть отдельно от человеческой, то есть перед запястным суставом, это исключит конструктивные сложности связанные с нахождением руки человека в руке экзоскелета и не позволит травмировать человеческую руку, а равно как и стопа человека должна быть на голеностопном суставе экзоскелета и защищена.
-управление рукой. немного свободного пространства для двух третей свободы движения кисти и пальцев руки человека в руке экзоскелета и система из трёх колец на тросиках, три пальца от мизинца до среднего в одно, указательный в другое и большой в третье. всё управление сводится к тому, чтобы пальцы человека передвигая кольцо, которое на них надето, тросиком прокручивали колесо датчика, в зависимости от поворота которого сгибались и разгибались пальцы экзоскелета. это исключит лишнее усилие гидравлики на разгибание или сгибание пальцев руки экзоскелета сверх его конструктивных возможностей. на два кольца использовать по одному тросику, на одно-два. Почему? по тому что пальцы от мизинца до указательного нужно сгибать и разгибать только в одном направлении а большой палец в двух. Если хотите, можете проверить на собственных руках.

Источник питания экзоскелета - вот с этм опять таки выходит жуткая мудятина. Выбирать источник питания нужно только после произведения всех необходимых расчётов, максимальной оптимизации конструкции экзоскелета и измерения его энергопотребления.

Разорвать воздух на скорости звука и устремиться к горизонту, вытянув руки по швам в своём железном костюме. В мгновение ока оказаться в любой точке земного шара без необходимости стоять в пробке. Летать без крыльев, не будучи на борту самолёта или чего покрепче. Пусть бросит в меня камень тот, кто не хотел оказаться на месте Тони Старка в его звёздные моменты (конечно, в костюме Железного человека). Частично эти мечты сумеет реализовать экзоскелет - устройство, который может увеличить способности человека (по большей части физические, мускульную силу) за счет внешнего каркаса. О том, что собой представляет это устройство, какие наработки уже имеются и как технологии будут развиваться в будущем, мы расскажем в этом материале.

От эластипеда до «железного человека»

Наука и технологии - это без преувеличений самая лютая гонка изобретательности человека и природы. Всю свою историю человек пытается переделать мир вокруг себя под свои нужды. Где-то это ему удаётся, часто не без вреда для природы. Где-то приходится подглядывать у неё. И если у большинства беспозвоночных в том или ином виде есть внешний скелет, у человека его нет. Но ведь и крыльев не было?

В наше время под экзоскелетом подразумевается механический костюм или его часть до 2–2,5 метра высотой. Дальше идут «мобильные костюмы», меха и другие гигантские человекоподобные роботы.

Как и многое другое в нашей жизни, экзоскелеты постепенно перешагивают границу, разделяющую смелые мечты и повседневную жизнь. Будучи изначально просто идеями, концептами, мифами и легендами научной фантастики, сегодня чуть ли не каждую неделю появляются новые варианты экзоскелетов.

Первым изобретателем экзоскелета считается русский «инженеръ-механикъ» Николай Фердинандович Ягн, который ещё в 1890-х годах зарегистрировал ряд патентов на эту тему. Он жил в Америке, где, собственно, и патентовал свои чудеса, показывал их на выставках, а по возвращении на родную землю снова изобретал. Его экзоскелет должен был облегчить ходьбу, бег и прыжки в первую очередь, солдат. Уже тогда русский гений предвидел потенциальную военную мощь подобных устройств.

НИКОЛАЙ
Фердинандович ЯГН

Кроме экзоскелета Ягн разработал охлаждающие занавески, гидромотор, качающийся винт, самовар-стерилизатор и другие устройства


Hardiman

Не будем отрицать, гигантский и необъятный вклад в развитие экзоскелетов внесли фантасты. В 1959 году после нашумевшего романа Роберта Хайнлайна «Звёздный десант» всем стало понятно, что за внешними каркасными костюмами - будущее военных действий и не только. И понеслось.

Первый экзоскелет был создан компанией General Electric при поддержке Министерства обороны США в 1960-х годах. Hardiman весил 680 килограммов и мог поднимать грузы весом до 110 килограммов. При всех гигантских амбициях - а его хотели использовать и под водой, и в космосе, и боеголовки таскать, и ядерные стержни - показал он себя не лучшим образом. О нём благополучно забыли.

отдалённо напоминающее экзоскелеты устройство «педомотор» изобретателя Лесли С. Келли, разработанное в 1917 году

Девять лет спустя Миомир Вукобратович из югославского Белграда показал первый силовой шагающий экзоскелет, задача которого была давать людям с параличом нижних конечностей возможность шагать. В основе устройства лежал пневмопривод. Советские учёные из Центрального института травматологии и ортопедии имени Н. Н. Приорова проявили первые инициативы по разработке экзоскелетов совместно с югославскими коллегами на основе работ именно Вукобратовича. Но с началом перестройки проекты были закрыты, а о секретных подпольных разработках экзоскелетов данных нет. Зато с освоением космоса всё было хорошо.

В разное время в разных странах умельцы пытались сделать экзоскелеты самого разного назначения, но в силу самых разных препятствий (о которых мы ещё поговорим) удавалось это в край плохо. Нехватка энергоносителей, медленный рост научно-технического прогресса, развития материаловедения и прочих смежных наук, а также развитие компьютерных вычислений и кибернетики, волна которых поднялась только лет 30 назад, - всё это тормозило развитие экзоскелетов. Без всяких сомнений, это сложнейшие технологии, которые людям ещё предстоит освоить.


Проблемы экзоскелетов

На этой планете не так много материалов, из которых можно сделать жёсткий каркас и которые не усугубят дело своим весом. Во всяком случае, их было не много, но с учётом космических полётов, военных наработок, развития материаловедения, нанотехнологий и ещё десятка-другого интересных сфер человечество постепенно берёт один барьер за другим. В начале XXI века интерес к экзоскелетам разгорелся с недюжинной силой и продолжает гореть до сих пор. Но сначала поговорим об основных проблемах, с которыми сталкиваются создатели экзоскелетов.

Если разложить гипотетический экзоскелет на составляющие, у нас будут: источник питания, механический скелет и программное обеспечение. И если с двумя последними пунктами вроде бы всё ясно и проблем почти не осталось, то источник питания - это серьёзная проблема. Имея нормальный источник питания, инженеры могли бы не просто создать экзоскелет, а ещё и объединить его со скафандром и реактивным ранцем. Получился бы костюм Железного человека, наверное, но новый Тони Старк пока не явился.

Любой из компактных источников питания на сегодняшний день может обеспечить экзоскелету лишь несколько часов автономной работы. Дальше - зависимость от провода. У неперезаряжаемых и аккумуляторных батарей есть свои ограничения вроде необходимости замены или медленной зарядки, соответственно. Двигатели внутреннего сгорания должен быть слишком надёжным, но не особо компактным. К тому же, в последнем случае понадобится дополнительная система охлаждения, а сам двигатель внутреннего сгорания сложно настроить на моментальный выброс большого количества энергии. Электрохимические топливные элементы могут быстро заправляться жидким топливом (например, метанолом) и давать нужный и моментальный выброс энергии, но работают при крайне высоких температурах. 600 градусов по Цельсию - относительно низкая температура для такого источника питания. С ним «железный человек» превратится в хот-дог.

Как ни странно, наиболее возможным вариантом решения топливного вопроса для экзоскелетов будущего может стать самый невозможный: беспроводная передача энергии. Она могла бы решить массу вопросов, ведь её можно передавать из сколь угодно большого реактора (и ядерного в том числе). Но как? Вопрос открыт.


Первые экзоскелеты делались из алюминия и стали, недорогих и простых в использовании. Но сталь слишком тяжёлая, а экзоскелет обязательно должен работать и над тем, чтобы поднять свой собственный вес. Соответственно, при большом весе костюма его эффективность упадёт. Алюминиевые сплавы достаточно лёгкие, но накапливают усталость, а значит, не особо подходят для высоких нагрузок. Инженеры находятся в поисках лёгких и прочных материалов вроде титана или углеродного волокна. Они неизбежно будут дорогими, но обеспечат эффективность экзоскелета.

Особую проблему представляют приводы. Стандартные гидравлические цилиндры достаточно мощные и могут работать с высокой точностью, но тяжёлые и требуют наличия кучи шлангов и трубок. Пневматика, напротив, слишком непредсказуема в плане обработки движений, поскольку сжатый газ пружинит, а реактивные силы будут толкать приводы.

Впрочем, разрабатываются новые сервоприводы на электронной основе, которые будут использовать магниты и обеспечивать отзывчивые движения, потребляя минимум энергии и будучи небольшими. Можете сравнить это с переходом от паровозов к поездам. Отметим ещё гибкость, которая должна быть у суставов, но здесь проблемы экзоскелетов могут решить разработчики скафандров. Они же помогут разобраться с адаптацией костюма к размерам носителя.

Управление

Особую проблему при создании экзоскелета представляет управление и регулировка чрезмерных и нежелательных движений. Нельзя просто так взять и сделать экзоскелет с одной скоростью реакции каждого из членов. Такой механизм может быть слишком быстрым для пользователя, а слишком медленным его не сделаешь - неэффективно. С другой стороны, нельзя положиться на пользователя и доверить датчикам считывать намерения по движениям тела: рассинхронизация движений пользователя и костюма приведёт к увечьям. Нужно ограничивать обе действующих стороны. Над решением этого вопроса и ломают головы инженеры. Кроме того, нужно заранее обнаружить непреднамеренное или нежелательное движение, чтобы случайный чих или кашель не привёл к вызову скорой.


Экзоскелеты и будущее

В 2010 году компании Sarcos и Raytheon совместно с Министерством обороны США показала боевой экзоскелет XOS 2. Первый прототип вышел за два года до этого, но не вызвал переполоха. А вот XOS 2 оказался настолько крутым, что журнал Time включил экзоскелеты в список пяти лучших военных инноваций года. С тех пор ведущие инженеры мира ломают головы над созданием экзоскелетов, которые смогут обеспечить преимущество на поле боя. И за пределами него тоже.

Что мы имеем на сегодняшний день?

Этот экзоскелет был представлен в 2011 году и был предназначен для людей с ограниченными возможностями. В январе 2013 года вышла обновленная версия - ReWalk Rehabilitation, а уже в июне 2014 года FDA одобрило использование экзоскелета на публике и дома, тем самым открыв ему дорогу в коммерческом плане. Система весит около 23,3 килограмма, работает на базе Windows и в трёх режимах: идти, сидеть и стоять. Стоимость: от 70 до 85 тысяч долларов.

Серия этих военных экзоскелетов находится в активной разработке (на очереди XOS 3). Весит около 80 килограммов и позволяет владельцу с лёгкостью поднимать 90 лишних килограммов. Последние модели костюма настолько подвижны, что позволяют играть с мячом. Как отмечают производители, один XOS может заменить трёх солдат. Возможно, третье поколение экзоскелета будет уже ближе к тому, что мы видим на экранах фантастических фильмов последних лет. Увы, пока он привязан к внешнему источнику питания.

Human Universal Load Carrier - творение известной компании Lockheed Martin совместно с Berkeley Bionics. Этот экзоскелет также предназначен для военных. Основа - гидравлика и литий-полимерные батареи. Правильно загрузив внешний каркас, с его помощью пользователь может переносить до 140 килограммов лишнего груза. Предполагается, что солдаты смогут использовать HULC а-ля «я и друг мой грузовик» в течение 72 часов. Разработка идёт полным ходом, поэтому неудивительно, что именно HULC могут первыми поступить на вооружение США.

ExoHiker, ExoClimber и eLEGS (Ekso)

Прототипы опять же Berkeley Bionics, предназначенные для выполнения различных задач. Первый должен помочь путешественникам переносить груз до 50 килограммов, был представлен в феврале 2005 года и весит около 10 килограммов. Учитывая небольшую солнечную панель, может работать очень и очень долго. ExoClimber - это десятикилограммовое дополнение к ExoHiker, позволяющее носителю прыгать и взбираться по ступенькам. В 2010 году наработки Berkeley Bionics вылились в eLEGS. Эта система - полноценный гидравлический экзоскелет, который позволяет парализованным людям ходить и стоять. В 2011 году eLEGS был переименован в Ekso. Он весит 20 килограммов, передвигается с максимальной скоростью в 3,2 км/ч и работает в течение 6 часов.

Очередной нашумевший экзоскелет японского производителя роботов Cyberdyne. Его назначение - обеспечить возможность ходить людям с ограниченными возможностями. Есть два основных варианта: HAL-3 и HAL-5. С момента презентации в 2011 году меньше чем за год HAL приняли «на вооружение» более 130 медицинских институтов по всей стране. Однако испытания будут продолжаться весь 2014 и, возможно, 2015 год. В августе 2013 года HAL получил карт-бланш на использование в качестве медицинского робота в Европе. Новейшая модель костюма весит около 10 килограммов.

Cредняя стоимость медицинского экзоскелета -
90 тысяч долларов.

Помимо серьёзных экзоскелетов на всё тело, всё большей популярностью пользуются ограниченные экзоскелеты, предназначенные для выполнения специфических задач. Например, в августе этого года был показан экзостул Chairless Chair, позволяющий сидеть стоя. Компании Daewoo и Lockheed Martin независимо друг от друга показали экзоскелеты для работников судостроительных верфей. Эти устройства позволяют рабочим удерживать груз или инструмент весом до 30 килограммов, особо не напрягаясь.

В России разработкой экзоскелета под названием «ЭкзоАтлет» занимается команда учёных, собранная на базе НИИ Механики МГУ. Они продолжают начатые ещё в СССР разработки Вукобратовича, о которых мы упоминали выше. Первый рабочий пассивный экзоскелет этой команды был разработан для сотрудников МЧС, пожарных и спасателей. При весе в 12 килограммов конструкция позволяет без особых усилий переносить до 100 килограммов груза. В планах компании - разработка силовой модели ExoAtler-A, которая позволит переносить до 200 килограммов, а также медицинского экзоскелета для реабилитации людей с ограниченными возможностями.

Объединяет все эти костюмы то, что представлены они по большей части в качестве прототипов. Значит, будут совершенствоваться. Значит, их ждут полевые испытания. Значит, будут новые модели. Значит, за ними будущее. Пока говорить о том, что рабочий и полезный экзоскелет можно пойти и купить на чёрном рынке, рановато. Но начало положено, а развитие этого направления уверенно входит в широкое русло. До костюма Тони Старка нам ещё далековато, но что мешает радоваться зрелищным фильмам? Любителям зрелищных разборок с участием экзоскелетов всегда будет что посмотреть: «Чужие» (1986), «Железный человек» (2008), «Аватар» (2009), «Район № 9» (2009), «Мстители» (2012), «Элизиум» (2013), «Грань будущего» (2014).

Одно известно наверняка: экзоскелеты в будущем будут повсюду. Они помогут нашим космонавтам освоить Марс, построить первые колонии и с удобством управляться в космосе. Они станут на вооружение в военном сегменте, поскольку по умолчанию наделяют солдат сверхчеловеческой силой. Они дадут возможность полноценно передвигаться тем, кто её потерял. Костюм Железного человека однажды станет реальным, как и всё, что вы видите вокруг.

«ЭкзоАтлет»


Если вы один из тех, кто с превеликим удовольствием посмотрел все части «Железного человека», вы наверняка были в восторге от железного костюма, который надевал Тони Старк перед боем со злодеями. Согласитесь, было бы неплохо обладать таким костюмом. Помимо возможности доставить вас в мгновение ока куда угодно, хоть , хоть за хлебом, он защищал бы ваше тело от всевозможных повреждений и давал сверхчеловеческую силу.

Вас наверняка не удивит тот факт, что очень скоро облегченная версия костюма «Железного человека» позволит солдатам бегать быстрее, переносить тяжелое оружие и передвигаться по пересеченной местности. При этом костюм будет защищать их от пуль и бомб. Военные инженеры и частные компании работают над экзоскелетами с 60-х годов прошлого века, но только послдние достижения в области электроники и материаловедения приблизили нас к воплощению этой идеи так близко, как никогда до этого.

В 2010 году американский оборонный подрядчик Raytheon продемонстрировал экспериментальный экзоскелет XOS 2 — по сути, роботизированный костюм, управляемый человеческим мозгом — который может поднять в два-три раза больше веса, нежели человек, безо всяких усилий и посторонней помощи. Другая компания, Trek Aerospace, разрабатывает экзоскелет со встроенным джетпаком (реактивным ранцем), который сможет летать на скорости 112 км/ч и неподвижно зависать над землей. Эти и ряд других перспективных компаний, включая таких монстров, как и Lockheed Martin, с каждым годом приближают костюм «Железного человека» к реальности.

Интервью с создателем российского экзоскелета Stakhanov читайте .

Экзоскелет XOS 2 от Raytheon

Отметим, что не только военные получат выгоду от разработки хорошего экзоскелета. Однажды, люди с поврежденным спинным мозгом или дегенеративными заболеваниями, ограничивающими способности передвижения, смогут с легкостью перемещаться благодаря внешним каркасным костюмам. Первые версии экзоскелетов, например, ReWalk от Argo Medical Technologies, уже поступили на рынок и получили всеобщее одобрение. Тем не менее, на данный момент область экзоскелетов все еще находится в зачаточном состоянии.

Какую революцию обещают провести экзоскелеты будущего на поле боя и ? Какие технические препятствия должны преодолеть инженеры и конструкторы, чтобы сделать экзоскелеты действительно практичными для повседневного использования? Давайте разберемся.

История разработки экзоскелетов

Воины надевали доспехи на свои тела с незапамятных времен, но первая идея тела с механическими мышцами появилась в научной фантастике в 1868 году, в одном из копеечных романов Эдварда Сильвестра Эллиса. В книге «Паровой человек прерий» описывался гигантский паровой двигатель человеческой формы, который передвигал его изобретателя, гениального Джонни Брейнерда, со скоростью 96,5 км/ч, когда тот охотился на быков и индейцев.

Но это фантастика. Первый же реальный патент на экзоскелет получил русский инженер-механик Николай Ягн в 1890-х годах в Америке. Известный своими разработками конструктор более 20 лет прожил за океаном, запатентовал с десяток идей, описывающих экзоскелет, позволяющий солдатам бегать, ходить и прыгать с легкостью. Однако на деле Ягн известен только по созданию «Друга кочегара» — автоматического приспособления, подающего воду в паровые котлы.

Экзоскелет, запатентованный Н. Ягном

К 1961 году, спустя два года после того, как Marvel Comics придумала своего «Железного человека», а Роберт Хайнлайн написал «Звездный десант», Пентагон решил сделать свои экзокостюмы. Он поставил задачу создать «сервосолдата», который описывался как «человеческая капсула, оснащенная рулевым управлением и усилителями», позволявшими быстро и легко передвигать тяжелые объекты, а также защищающая носителя от пуль, ядовитого газа, тепла и радиации. К середине 60-х годов инженер Корнельского университета Нил Майзен разработал 15,8-килограммовый носимый каркасный экзоскелет, получивший название «костюм сверхчеловека» или «человеческий усилитель». Он позволял пользователю поднимать 453 килограмма каждой рукой. К тому же времени General Electric разработала похожее 5,5-метровое устройство, так называемый «педипулятор», который управлялся оператором изнутри.

Несмотря на эти весьма интересные шаги, успехом они не увенчались. Костюмы оказались непрактичными, однако исследования продолжались. В 80-х годах ученые из Лос-Аламосской лаборатории создали дизайн для так называемого костюма «Питмана», экзоскелета для пользования американским десантом. Однако концепт остался только на чертежной доске. С тех пор мир увидел еще несколько разработок, но недостаток материалов и ограничения энергоносителей так и не позволили нам увидеть настоящий костюм «Железного человека».

На протяжении многих лет производители экзоскелетов были загнаны в угол пределами технологий. Компьютеры были слишком медленными и не могли обрабатывать команды, приводящие костюмы в движение. Энергоснабжения не хватало, чтобы сделать экзоскелет достаточно портативным, а электромеханические мышцы-приводы, которые двигали конечностями, были просто слишком слабыми и громоздкими, чтобы работать «по-человечески». Тем не менее, начало было положено. Идея экзоскелета оказалась слишком многообещающей для военной и медицинской сфер, чтобы просто так расстаться с ней.

Человек-машина

В начале 2000-х годов стремление создать настоящий костюм «Железного человека» начало хоть куда-то приводить.

Оборонное агентство перспективных разработок DARPA, инкубатор экзотических и передовых технологий Пентагона, развернуло программу на 75 миллионов долларов, в рамках которой предполагалось создание экзоскелета для дополнения человеческого тела и его производительности. Список требований DARPA был достаточно амбициозным: агентство хотело получить машину, которая позволит солдату неустанно переносить сотни килограммов груза целыми днями, поддерживать крупные орудия, которые обыкновенно требуют наличия двух операторов, а также сможет вынести раненого солдата, если понадобится, с поля боя. При этом машина должна быть неуязвима к огню, а также высоко прыгать. План DARPA многие сразу сочли невыполнимым.

Но не все.

Компания Sarcos — во главе с создателем роботов Стивом Якобсеном, который до этого создал 80-тонного механического динозавра — придумала инновационную систему, в которой датчики и использовали эти сигналы для управления набором клапанов, которые, в свою очередь, регулировали гидравлику под высоким давленим в суставах. Механические суставы двигали цилиндры, связанные кабелями, имитирующими сухожилия, соединяющие человеческие мышцы. В результате родился экспериментальный экзоскелет XOS, который делал человека похожим на гигантское насекомое. В конечном итоге Sarcos была приобретена компанией Raytheon, которая продолжила разработку, чтобы через пять лет представить второе поколение костюма.

Экзоскелет XOS 2 настолько взбудоражил общественность, что журнал Time включил его в список пяти лучших в 2010 году.

Между тем, другие компании, вроде Berkeley Bionics, работали над уменьшением количества энергии, которого требовали искусственные протезы, чтобы экзоскелет мог функционировать достаточно долго и быть практичным. Один из проектов 2000-х, Human Load Carrier (HULC), мог работать до 20 часов без подзарядки. Прогресс понемногу продвигался вперед.

Экзоскелет HAL

К концу десятилетия японская компания Cyberdyne разработала роботизированный костюм HAL, еще более невероятный по своему устройству. Вместо того, чтобы полагаться на сокращения мышц человека-оператора, HAL работал на датчиках, которые считывали электрические сигналы мозга оператора. Теоретически, экзоскелет на базе HAL-5 может позволить пользователю делать все, что он захочет, просто подумав об этом, не двигая ни единым мускулом. Но пока эти экзоскелеты — проект будущего. И у них есть свои проблемы. Например, только несколько экзоскелетов на сегодняшний день получили одобрение на использование на публике. Остальные еще проходят испытания.

Проблемы развития

К 2010 году проект DARPA по созданию экзоскелетов привел к определенным результатам. В настоящее время передовые системы экзоскелетов весом до 20 килограммов могут поднимать под 100 килограммов полезной нагрузки практически без усилий оператора. При этом, новейшие экзоскелеты работают тише офисного принтера, могут двигаться со скоростью 16 км/ч, выполнять приседания и прыгать.

Не так давно один из подрядчиков оборонного агентства, Lockheed Martin, представил свой экзоскелет, разработанный для поднятия тяжестей. Так называемый «пассивный экзоскелет», созданный для работников судостроительной верфи, просто переводит нагрузку на ноги экзоскелета, стоящие на земле.

Отличие современных экзоскелетов от тех, что разрабатывались в 60-х годах, в том, что они оснащаются датчиками и приемниками GPS. Тем самым еще более поднимая ставки на использование в военной сфере. Солдаты могли бы получить массу преимуществ, используя такие экзоскелеты, от точного геопозиционирования до дополнительных сверхспособностей. DARPA также разрабатывает автоматизированные ткани, которые могли бы использоваться в экзоскелетах с целью мониторинга состояния сердца и дыхания.

Если американская промышленность продолжит двигаться этим путем, у нее очень скоро появятся , которые смогут не только перемещаться «быстрее, выше, сильнее», но и переносить при этом дополнительно несколько сотен полезного груза. Тем не менее, пройдет еще по меньшей мере несколько лет, прежде чем настоящие «железные человеки» выйдут на поле боя.

Как это часто бывает, разработки военных агентств (вспомним, например, интернет) могут принести огромную пользу в мирное время, так как технологии в конечном итоге выйдут наружу и будут помогать людям. Страдающие от полного или частичного паралича, люди с повреждениями спинного мозга и атрофией мышц смогут вести более полнокровную жизнь. Berkeley Bionics, например, испытывает eLegs, экзоскелет, работающий на аккумуляторе, который позволит человеку ходить, сидеть или просто стоять в течение длительных периодов времени.

Одно можно сказать наверняка: начало процессу бурной разработки экзоскелетов было положено в начале этого века (назовем это второй волной), а чем все закончится — станет известно очень и очень скоро. Технологии никогда не стоят на месте, и если уж инженеры за что-то берутся, то доводят это дело до логического конца.

Экзоскелет впервые может стать доступнее массовому потребителю, принося реальную практическую пользу. Последние новости на эту тему опубликовал отраслевой портал Composites Today !

Новый экзоскелет сделает пешие прогулки комфортнее и легче. Устройство представляет из себя ботинки, созданные с применением композиционных материалов и не требует для работы источников питания!

Новый экзоскелет! Чем полезен?

Группа американских разработчиков в составе Стивена Коллинса , Брюса Виджина и Грэгори Савицки представила миру новый экзоскелет в виде своеобразных ботинок. Новинка интересна тем фактом, что ее конструкция создана с применением инновационных материалов и не предполагает использование аккумуляторов и внешних источников питания. Указанные особенности позволили не только существенно снизить вес устройства (каждый ботинок весит менее полутора килограмм ) но и сделать его полностью автономным!

Проведенные исследования показали, что «пешеходный» экзоскелет способен уменьшать расход человеком энергии при ходьбе до 7% ! Данный результат поистине можно назвать – прорывным ! Хоть первые попытки облегчить человеческое передвижение начались еще в 80-х годах прошлого века, на сегодняшний день наибольшего успеха в этом вопросе, из автономных приспособлений, добились лишь специализированные резиновые ленты, которым далеко до показателей упомянутых ботинок. Что касается экзоскелетов в принципе, то в мире существует уже множество агрегатов подобного типа, но все они, как правило, используют искусственные источники энергии. Это, в свою очередь, ограничивает свободу и автономность перемещения.

Экзоскелет – Ботинки: Принцип работы (видео)


Принцип работы экзоскелета
в виде ботинок довольно прост. Устройство, изготовленное из углеродного волокна, имеет пружину, которая крепится к ноге через механическое устройство (храповик) на тыльной стороне чуть ниже колена. Экзоскелет имеет каркас, сделанный из облегченного волокнистого углеродного материала, а также пружину, которая соединяет заднюю часть стопы с верхней частью голени (чуть ниже задней части колена), где она соединена с механической муфтой сцепления. Когда ахиллово сухожилие растягивается, муфта зацепляется в верхнем положении, пружина растягивается подобно сухожилию, накапливая энергию. После того, как шагающая нога опускается, муфта переходит в нижнее положение, пружина расслабляется, высвобождая упругую энергию, которая снова толкает муфту в верхнее положение, начиная следующий цикл. В общем виде цикл работы экзоскелета состоит из следующих этапов:

  1. Храповик входит в зацепление;
  2. Пружина ослабевает, высвобожденная упругая энергия толкает храповик вверх;
  3. Храповик фиксируется в высшей точке;
  4. После перемещения веса пружина растягивается;
  5. Пружина достигает максимального натяжения;
  6. Храповик высвобождается, нога переносится на шаг вперед, и цикл повторяется снова.

Следует отметить, что ученые работали над этим проектом долгие годы. Было испробовано много вариантов конструкции и материалов. В конечном итоге выбор пал на композиционный материал с использованием углеродного волокна.

Представленный экземпляр можно считать прорывом в индустрии и готовым (в той или иной степени) к практическому применению, тем не менее, исследователи не останавливаются на достигнутом! Уже сейчас прорабатываются варианты усовершенствования конструкции за счет применения электроники, которая позволит отслеживать индивидуальные особенности ходьбы и особенности местности (например – подъем в гору).

Кроме того, создатели инновационного экзоскелета надеются на объединение с производителями спортивного инвентаря, чтобы обрести финансовую и технологическую поддержку, которые позволят коммерциализовать изобретение. Предполагается, что экзоскелетные ботинки будут стоить не дороже ботинок лыжных. Учитывая эти предпосылки можно предположить, что новая разработка явно найдет своего покупателя и будет пользоваться спросом.

История экзоскелета

Первым в истории устройством, которое можно классифицировать как экзоскелет, можно назвать изобретение русского умельца Николая Янга . В 1890 году он представил конструкцию, состоящую из мешков со сжатым газом и позволявшее облегчить передвижение. По понятным причинам, первый экзоскелет был крайне примитивен.

Очередной шаг в вопросе разработки экзоскелетов был сделан американским изобретателем Лэсли Келли в 1917 году. Конструкция, получившая название pedomotor , использовала энергию пара.

Первый экзоскелет, в современном понимании этого слова, был разработан в 1960 году компанией General Electric для нужд вооруженных сил США. Устройство под названием Hardiman позволяло поднимать вес до 110 килограмм, используя при этом усилие, сопоставимое с поднятием человеком веса в 4,5 кг. Конструкция экзоскелета включала гидравлические механизмы и электроэнергию, как источник для работы. Тем не менее, Hardiman обладал и рядом существенных недостатков: большой собственный вес (порядка 680 кг.); низкая скорость работы; низкий уровень контроля за манипуляциями. Следует отметить, что данное устройство никогда не испытывалось с человеком внутри, из-за большого риска для жизни и здоровья испытателя.

В 1969 году в Югославии был разработан первый, шагающий экзоскелет на пневматическом приводе.

Экзоскелет от DARPA (Фото: en.Wikipedia.org)

Куда большего успеха добился Монти Рид , работая в проекте DARPA . Рид получил травму в результате неудачного прыжка с парашютом. Находясь в больнице, на восстановлении, он читал книгу Роберта Хайнлайна «Звездный десант ». В ней экзоскелет престает как ключевое обмундирование солдата. Книга вдохновила Рида, и в 1986 году миру был представлен LifeSUIT , созданный в рамках проекта Pitman . Разработки в этом направлении продолжились. Одной из последних модификаций стал экзоскелет LifeSUIT 14, способный преодолевать расстояние в 1 милю на полной зарядке и поднимать оператору вес до 92 кг.

В январе 2007 года стало известно о том, что Минобороны США (Пентагон) разместило заказ и предоставило средства Университету штата Техас на предмет создания нового класса экзоскелетов военного назначения. В рамках проекта, помимо прочего, планировалось исследовать искусственные электроактивные полимеры, призванные увеличить коэффициент прочности, снизить вес конструкции и повысить эффективность передвижения. В результате разработчики добились существенных успехов! Были на основе капроновой нити и лески. «Полимерные мышцы» из США превышают возможности человеческих мышц в 100 раз! При этом их цена составляет всего 5$ за килограмм, в то время, как мышцы для экзоскелета сделанные из сплавов титан и никеля стоят не менее 3 000$ за 1 кг.

С конца 2013 года активные исследования в вопросе экзоскелетов ведутся и в России. Проект, получивший название ExoAtlet предполагает своей целью создание механизма, предназначенного для медицинских целей.

Зачем нужен экзоскелет?

Механизм, способный облегчить пердвижение человека и повысить его физическую силу сулит большими перспективами!

На сегодняшний день эксперты выделяют 3 основные сферы, где экзоскелет будет очень востребован.

  1. В первую очередь это – военная индустрия ! Собственно именно здесь экзоскелеты и получили свой изначальный толчок к развитию и прогрессу. Конструкция поможет солдату переносить больший вес (в том числе оружие) и защитит его слоем брони.
  2. Большую пользу экзоскелеты могут принести и в медицинском сегменте . Они облегчат жизнь и помогут с передвижением людям с поврежденным опорно-двигательным аппаратом.
  3. Третьим направлением, где экзоскелеты будут востребованы, является использование подобных конструкций для работы . Например, в строительстве или погрузочно-разгрузочных работах.

Таким образом, можно констатировать, что экзоскелет – агрегат будущего ! Если у вас есть пара-тройка миллионов долларов, вероятно Вам стоит задуматься о инвестировании именно в этот сектор народного хозяйства.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter

Похожие публикации