Интернет-журнал дачника. Сад и огород своими руками

Вертикальные связи в покрытии не устраивают. Связи стального каркаса производственного здания. Объёмно-блочная конструктивная система зданий(16)

Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи . Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.

Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.

Основными элементами, которые соединяют связи, являются фермы и колонны.

Металлические связи колонн

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков - крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.

Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн . Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.

Схема вертикальных связей между колоннами

Металлические связи ферм

Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм , а по стойкам решетки - вертикальными связями ферм .

Горизонтальные связи ферм по нижним и верхним поясам

Горизонтальные связи ферм бывают также продольными и поперечными.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.

Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.

Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.

Вертикальные связи колонн и ферм

Конструкции металлических связей стального каркаса

По конструкции металлические связи также бывают:

    перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине

    угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов

    портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности

Основным типом соединения металлических связей - это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.

Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.

Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.

Как заказать изготовление металлических связей на Саратовском резервуарном заводе?

Для расчета стоимости металлоконструкций нашего производства, Вы можете:

Специалисты Завода предлагают комплексные услуги:

  • инженерные изыскания на объекте эксплуатации
  • проектирование объектов нефтегазового комплекса
  • производство и монтаж различных металлоконструкций

Конструкция связей, устанавливаемых в покрытии, зависит от схемы и материала каркаса, типа покрытия, высоты здания, вида крана, его грузоподъемности и режима работы.
Вертикальные связи между опорами железобетонных ферм или балок покрытия ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций связи располагают в каждом ряду колонн, а с такими конструкциями — только в крайних рядах колонн при шаге 6 м.

Вертикальные связи между опорами ферм или балок ставят не чаще, чем через один шаг. Их количество при длине температурного блока 60—72 At на каждый ряд колонн может быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. На рис. 69, а показаны четыре такие связи.

При наличии вертикальных связей между опорами ферм или балок покрытия или связей между колоннами (в зданиях без кранов) по верху колонн ст."шяг распорки (рис. 69, а, в).

В зданиях с шагом колонн в средних и крайних рядах 12 м предусматривают горизонатальные фермы в торцах - по две в каждом пролёте на температурный блок. Эти фермы ставят на уровне нижнего пояса стропильных ферм (рис. 69, в). В зданиях с подстропильными конструкциями в средних рядах колонн устраивают горизонтальные распорки в количестве 2—4 на один ряд колонн температурного блока (рис. 69, б).

Рис. 69. Связи в покрытиях при железобетонных фермах

В зданиях с мостовыми кранами тяжелого режима работы или при наличии оборудования, вызывающего колебания конструкций, по нижнему поясу стропильных ферм или балок в середине каждого пролета устанавливают распорки (тяжи) и вертикальные связи в двух крайних шагах температурного блока. Роль горизонтальных связей по верхнему поясу ферм или балок выполняют крупнопанельные плиты покрытия.

В пролетах с фонарями для обеспечения устойчивости верхнего пояса стропильных ферм устанавливают распорки (тяжи) по коньку ферм и горизонтальные связи по их верхнему поясу в пределах ширины фонаря в крайних (или вторых) шагах температурного блока.

В покрытиях с прогонами в крайних шагах температурных блоков по всей их ширине под прогонами устраивают горизонтальные связи крестовой схемы.
Вертикальные и горизонтальные связи делают в большинстве случаев из уголков и крепят к железобетонным конструкциям с помощью косынок (рис. 69, г, д). Тяжи изготовляют из круглой стали, а распорки, работающие на сжатие,— из железобетона.

Система связей покрытия в зданиях со стальным каркасом состоит из горизонтальных связей в плоскости нижних и верхних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по нижним поясам стропильных ферм располагают как поперек здания (поперечные горизонтальные), так и вдоль его (продольные горизонтальные). Поперечные горизонтальные связи по нижним поясам устанавливают у торцов и у температурных швов здания. При температурных блоках длиной 120—150 м и при кранах большой грузоподъемности предусматривают также промежуточные связе-вые фермы через каждые 60 м.
Продольные горизонтальные связи располагают по крайним панелям нижних поясов стропильных ферм и устраивают в зданиях с кранами Q>10T и в зданиях с подстропильными фермами.

В однопролетных зданиях такие связи располагают вдоль обоих рядов колонн, а в многопролетных — вдоль крайних рядов колонн и через ряд вдоль средних рядов (при кранах грузоподъемностью до 50 7) или более часто (при грузоподъемности кранов более 50 Т).
Вдоль средних рядов колонн при одинаковой высоте смежных пролетов продольные связи рекомендуется располагать с одной стороны колонн, а в мечтах ш"ропала высот — с обеих сторон ряда колонн.

Боковую жёсткость нижних поясов ферм, расположенных в промежутке между двумя поперечными связевыми фермами почивают специальными растяжками из уголков, закрепленными за узлы связевых ферм. Схема разбивки поперечных и продольных связей по нижним поясам ферм показана на рис. 70, а.

Горизонтальные поперечные связи по верхним поясам ферм обеспечивают устойчивость верхних поясов ферм из их плоскости, и ставят их в покрытиях с прогонами. В панельных покрытиях указанные связи предусматривают только в торцах здания и у температурных швов. В промежутках между поперечными связевыми фермами боковая устойчивость верхних поясов ферм обеспечивается прогонами, а на участках под фонарями — растяжками из уголков. Поперечные связи по верхним и нижним поясам ферм рекомендуется совмещать в плане.

Рис. 70. Связи в покрытиях при стальных фермах

При наличии подстропильных ферм в однопролетных покрытиях без прогонов и в многопролетных покрытиях, расположенных в одном уровне, предусматривают продольные горизонтальные связи в плоскости верхних поясов в одной из крайних панелей ферм. В случае перепада высот смежных пролетов предусматривают по одной продольной системе в каждом уровне.

Вертикальные связи покрытия располагают в плоскостях опорных стоек стропильных ферм, в плоскости коньковых стоек, для ферм пролетом до 30 м, а также в плоскости стоек, находящихся под узлом крепления наружных ног фонаря для ферм пролетом более 30 м. Вертикальные связи делают в виде ферм с параллельными поясами, имеющими высоту, равную высоте стоек, к которым связи крепят.

Связи по прогонам в виде ферм жесткости, распорок и тяжей обеспечивают проектное положение прогонов, повышают устойчивость и облегчают работу прогонов на скатную составляющую вертикальных нагрузок и воспринимают ветровые усилия.

Все типы связевых ферм выполняют из уголков с перекрестной решеткой, распорки также из уголков, а тяжи — из круглой стали. Крепят связи на черных болтах, в зданиях же с кранами большой грузоподъемности и тяжелого режима работы, а также в случае значительных усилий в элементах связей — на монтажной сварке и реже — на заклепках или чистых болтах. Некоторые детали крепления связей приведены на рис. 70, б — г.

1. горизонтальные поперечные связи по нижним поясам ферм размещаются в торцах температурного блока при шаге колонн крайнего и среднего ряда 12 м. При длине блока более 144 м. дополнительно устраивают в середине блока. Образуются путем объединения нижних поясов 2-х соседних стропильных ферм с помощью решетки. В результате они выполняют совместно функции: воспринимают от стоек торцового фахверка ветровую нагрузку и передают ее на связи между колоннами и далее на фундамент, а также предотвращают перемещения вертикальных связей и растяжки между нижними поясами ферм. Распорки между нижними поясами ферм- закрепляют эти пояса от смещения, тем самым сокращая расчетную длину из плоскости фермы, уменьшает вибрации нижних поясов ферм.

2. горизонтальные продольные связи по нижним поясам ферм служат опорами для верхних концов стоек продольного фахверка; при действии крановых нагрузок вовлекают в работу соседние рамы, уменьшая поперечные деформации и избегая заклинивания мостовых кранов. Эти связи обязательны в однопролетных зданиях большой высоты, с тяжелыми мостовыми кранами, при наличии продольного фахверка. Распорки обеспечивают проектное положение ферм в процессе монтажа, ограничивают гибкость ферм из их плоскости. Роль распорок выполняют прогоны, которые закреплены от смещения.

3. горизонтальные поперечные связи по верхним поясам ферм по конструкциям и схемам размещения аналогичны связям по нижним поясам. Служат от смещения распорок по верхним поясам ферм. От них можно отказаться, если между соседними стропильными фермами блока установить вертикальные связи и через них обеспечит крепление распорок к поперечным связям по нижним поясам ферм.

4. 4. вертикальные связи между опорами ферм или балок ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций размещаются в каждом ряду колонн, а с подстропильными конструкциями – только в крайних рядах колонн при шаге 6 м. Ставят не чаще, чем через один шаг. При длине температурного блока 60-72 м на каждый ряд колонн их должно быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. при наличии этих связей по верху колонн ставят распорки.

Единая модульная система в строительстве

Типизация в строительстве осуществляется на основе Единой Модульной Системы. Это правила по которым назначаются и согласуются между собой размеры зданий и конструкций.

Размеры по правилам ЕМС назначают по базе модуля. Основной модуль (М) равен 100 мм. При выборе размеров для зданий, конструкций пользуются укрупненным модулем: 6000 мм = 60М; 7200 мм = 72М. Дробный модуль применяют для назначения сечений конструкций: 50 мм = ½М.

ЕМС - единая модульная система, представляющая собой свод правил, которые координируют размеры объемно-планировочных и конструктивных частей строительных объектов и размеры сборных модулей и оборудования.

МКРС - модульная координация размеров в строительстве. Стандарт, применение которого при проектировании зданий позволяет унифицировать размеров строительных конструкций и объемно-планировочные размеры зданий. Данный стандарт предполагает унификацию следующих параметров: высоты этажей (Н0), шагов (В0) и пролетов (L0).

ЕМС основана на принципе кратности размеров. Размер любого из элементов здания должен быть кратен величине, называемой модулем. В системе ЕМС принят модуль в 100 миллиметров, который в технической документации обозначается буквой М. Соответственно, размеры крупных элементов конструкций будут обозначаться как производные от модуля. Например, 6000 мм - 60 М, 3000 мм - 30 М и так далее. Мелкие элемент обозначаются как дробные о т модуля: 50 мм - ½ М, 20 мм - 1/5 М.

15 основа планировки промзданий

Промышленные здания подразделяются по двум видам планировки:

раздельные (отдельно стоящие) здания , планировка которых хотя и дает конструктивную простоту и высокий уровень индустриальности в производстве зданий, однако отличается такими недостатками, как большая площадь застройки, большая протяженность инженерных и транспортных сетей, невозможность организации поточного производства, значительные энергозатраты на отопление помещений;

сплошные (сблокированные) здания , которые представляют собой

многопролетные корпуса большой площади (до 30...35 тыс. кв.м).Сплошная планировка обеспечивает многовариантную расстановку технологического оборудования, уменьшение площади завода на 30…40 %, снижение стоимости строительства на 10…15 %, сокращение длины инженерных и транспортных коммуникаций, сокращение периметра наружных стен на 50 % со снижением расходов на эксплуатацию. Однако недостатками сплошных зданий являются удорожание естественного освещения, затрудненный водоотвод с покрытий, усложнение путей передвижения транспорта и персонала. Блокировать цеха целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и при этом не ухудшаются условия технологии производства и труда рабочих.

Планировка промышленных зданий сопровождается зонированием в пределах объема производственных зданий, помещений, участков и зон, выделяемых по признакам однотипности технологии, уровню производственной вредности, уровню пожаро- и взрывоопасности, направленности транспортных и людских потоков, по перспективам расширения и переоснащения.

На выбор этажности промышленного здания влияют:

технология производства;

климатические условия района;

требования к застройке (городская, периферийная);

характер отведенного участка (свободный, стесненный рельеф);

достоинства и недостатки.

Одноэтажные здания имеют следующие достоинства :

простое объемно-планировочное решение;

склонность к унификации и блокированию;

снижение стоимости 1 кв. м на 10 % по сравнению со стоимостью многоэтажных зданий;

облегчение установки технологического оборудования;

упрощение путей грузовых потоков и использование горизонтального транспорта;

равномерное освещение рабочих мест естественным светом через фонари;

обеспечение естественного воздухообмена.

Недостатками одноэтажных зданий являются:

большая площадь застройки;

большая протяженность инженерных и транспортных сетей;

повышенные расходы на благоустройство территории;

большая площадь наружных ограждающих конструкций и в результате значительные расходы на отопление.

Многоэтажные здания лишеныбольшинства недостатков одноэтажных зданий и рациональны по применению, особенно при нагрузках до 10 кН/кв. м.

К основным недостаткам многоэтажных зданий относятся:

потребность в вертикальном транспорте;

повышенная стоимость;

ограничение по ширине при необходимости естественного освещения (ширина не более 24 м);

высокий удельный вес подсобных помещений.

Температурный блок.

Для ограничения усилий, возникающих в конструкциях от перепада температур, здание разрезается температурно-деформационными швами на отсеки (температурные блоки), размеры которых зависят от материала каркаса, теплового режима здания и климатических условий района строительства. Эти размеры определяются расчетом.

Продольные и поперечные температурно-деформационные швы указаны синим и красным цветами соответственно.

Для железобетонного и смешанного каркаса длина температурного блока А ≤ 72 м – если в здании по длине присутствуют неразрезные элементы (например, подкрановые балки). Для бескрановых зданий нормами разрешено увеличивать А до 144 м. Однако, если в здании есть подвесное оборудование (монорельс и т.п.) длина температурного блока не должна превышать 72 м. Допускается А увеличивать до 280 м, но при этом высота строения не должна превышать 8,4 м.

Ширина температурного блока Б не должна быть больше 90-96 м.

В особых климатических районах и для неотапливаемых помещениях длину температурного блока А назначают по инструкциям, привязанным к местным климатическим условиям.

В стальных каркасах зданий с мостовыми кранами А ≤ 120 м, в бескрановых зданиях А ≤ 240 м, а Б ≤ 210 м. В зданиях с кранами большой грузоподъемности (Q до 4500 кН) или при тяжелом или особо тяжелом режиме их работы А не должна превышать 96 м.

Температурный шов

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Тактемпературный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите

Стальные конструкции одноэтажных промышленных зданий

Стальной каркас промышленного здания состоит из тех же элементов, что и ж/б, только материал каркаса - сталь.

Применение стальных конструкций целесообразно при:

1. для колонн: при шаге 12 м и более, высоте здания более 14,4 м., двухъярусном расположение мостовых кранов, при грузоподъемности кранов 50 т и более, при тяжелых режимах работ;

2. для стропильных конструкций: в отапливаемых зданиях пролетом 30 м и более; в неотапливаемых зданиях 24 м и более; над горячими цехами, в зданиях с большими динамическими нагрузками; при наличии стальных колонн.

3. для подкрановых балок, фонарей, ригелей и стоек фахверка

Колонны

Колонны разработаны:

· одноветвевыми сплошностенчатыми постоянного сечения при высоте зданий 6 - 9,6 м, пролетом 18, 24 м.(серия 1,524-4, вып.2),

· двухветвевыми при высоте здания 10,8-18 м., пролетом 18,24,30,36 м. (серия 1,424-4, вып.1 и 4),

· раздельного типа , применяемые в зданиях большой грузоподъемностью и высотой более 15 м.

Подвесное оборудование

При высоте зданий до 7,2 не предусмотрены мостовые краны, только подвесное оборудование с грузоподъемностью до 3,2 т.; в зданиях 8,4-9,6 могут применяться мостовые краны грузоподъемностью до 20 т.

Колонны разработаны в двух вариантах: с проходами и без проходов. Для колонн без проходов расстояние от разбивочной оси до оси кранового рельса 750 мм, для колонн с проходами -1000 мм. Верхняя часть колонны двутавровая, нижняя из двух ветвей, соединенных решеткой из прокатных уголков, которые приваривают к полкам ветвей.

Проектирование колонн

Шаг колонн рекомендован для бескрановых зданий и с подвесным оборудованием по крайним рядам-6 м., средним- 6, 12 м.; с мостовыми кранами по крайним и средние рядам- 12 м. В целях унификации колонн их нижние торцы нужно располагать на отметке - 0,6 м. Для защиты от коррозии подпольную часть колонн вместе с базой покрывают слоем бетона.

Основные параметры колонны по высоте:

· Н в - высота верхней части,

· Н н -высота нижней части, отметка головки кранового рельса, высота сечения ветви h.

В средних рядах с перепадом высоты в каркасах можно установить один ряд колонн, но по линии перепада необходимо предусмотреть две разбивочные оси со вставкой между ними. Верхняя часть таких колонны принята одинаковая с верхней часть крайних колонн, т.е. имеет привязку 250 мм. Вторая разбивочная ось совмещена с наружной гранью верхней части колонн.

Фермы

Фермы покрытия используются в одно и многопролетных зданиях с ж/б или стальными колоннами длиной 18,24,30,36 м., шаг колонн принимается 6,12 м. состоят из самой фермы и опорных стоек. Опирание фермы на колонны или подстропильные фермы приняты шарнирными.

Изготавливаются трех типов: с параллельными поясами, полигональные, треугольные.

Конструкции ферм:

· Фермы с параллельными поясами пролетом 18 м. имеют уклоны 1,5 % только верхнего пояса, остальные как верхнего, так и нижнего поясов. Высота фермы на опоре 3150 мм.- по опушкам, и 3300 мм.-полная высота со стойкой, номинальная длина меньше пролета на 400 мм. (по 200 мм крайних отсеков). Ж/б плиты непосредственно опираются на верхний пояс стропильной фермы, усиленной накладками в местах опирания и привариваются. В покрытиях с проф. настилом применяют прогоны длиной 6 м., которые устанавливаются на верхний пояс и крепятся болтами, решетчатые прогоны длиной 12 м. привариваются.

· Фермы из круглых труб (экономичнее на 20%, менее повержены коррозии из-за отсутствие щелей и пазух) серия 1,460-5. предназначены только под проф. настил, нижний пояс горизонтален, верхний с уклоном 1,5%, высота на опоре 2900 мм., полная 3300, 3380 мм., номинальная длина также на 400 мм. короче.

· Фермы с уклоном верхнего пояса 1:3,5 (треугольные) , предназначены для однопролетных бесфонарных, неотапливаемых складских помещений с наружным водоотводом, серия ПК-01-130/66 для покрытия с прогонами.

· Подстропильные фермы запроектированы с параллельными поясами, высота по обушкам 3130 мм., полная 3250 мм. Опорную стойку подстропильной фермы выполняют из сварного двутавра со столиком в нижней части для опирания стропильных ферм. Подстропильные конструкции пролетом 12 м устанавливают на ж/б или стальные фермы. Пролетом 18,24 м только на стальные.

· Фахверк в стальном каркасе устраивают: при стенах из листового материала или панелей, в зданиях высотой более 30 м независимо от конструкции стены, в зданиях с тяжелым режимом работы кранов при кирпичных стенах, в сборно-разборных зданиях, для временных переносных торцевых стен при строительстве здания в несколько очередей. Фахверк состоит их стоек и ригелей. Их количество и месторасположение определяется шагом колонн, высотой здания, конструкцией стенового заполнения, характером и величиной нагрузки, расположением проемов. Верхние концы стоек фахверка крепятся к фермам покрытия или связям с помощью изогнутых пластин.

Система связей:

Система связей в покрытие состоит из горизонтальных в плоскости верхних и нижних поясов стропильных ферм и вертикальных между фермами.

Система предназначена для обеспечения пространственной работы и придания пространственной жесткости каркаса, восприятия горизонтальных нагрузок, обеспечения устойчивости во время монтажа, если здание состоит из нескольких блоков, каждый блок имеет самостоятельную систему.

Если покрытие здание из ж/б плит, то связи по верхнему поясу состоят из распорок и растяжек, горизонтальные связи предусмотрены только в фонарных зданиях и располагаются в подфонарном пространстве. Крепятся связи на болтах.

Горизонтальные связи по нижним поясам

Горизонтальные связи по нижним поясам различают двух типов:

Первый тип поперечных связевых ферм применяется при шаге крайних колонн 6 м. и располагается в торцах температурного отсека, при длине отсека более 96 м. устанавливаются дополнительные фермы с шагом 42-60 м. кроме того применяют продольные горизонтальные фермы, которые располагаются по крайним колоннам, по необходимости и по средним.

Эти связи применяются в зданиях: одно-, двухпролетных с кранами грузоп. 10 т. и более; в зданиях трех- и более пролетных с общей грузоп. 30 т. и более.

В остальных случаях используют связи типа 2 - второй тип используется при шаге крайних колонн 12 м. и распологаются аналогично первому типу.

Крепятся связи на болтах, при тяжелом режиме работ на сварке.

Вертикальные связи

Вертикальные связи располагаются вдоль пролетов, в местах размещения поперечных горизонтальных ферм через 6 м., крепятся на болтах или сварке, в зависимости от усилий.

При использование в покрытие проф. настила применяют прогоны, которые располагаются с шагом 3 м., при наличии перепадов высот допускается 1,5 м. проф. настил крепится к прогонам с помощью саморезов.

Вертикальные связи между стальными колоннами , предусматриваемые в каждом продольном ряду колонн, подразделяются на основные и верхние.

Основные обеспечивают неизменяемость каркаса в продольном направление, располагаются по высоте подкрановой части колонны в середине здания или температурного отсека. Проектируются крестовые, портальные или полупортальные.

Верхние связи, обеспечивающие правильность установки оголовков колонн в период монтажа и передачу продольных усилий с верхних участков торцевых стен на основные связи, размещаются в пределах надкрановой части колонны по краям температурного отсека. Кроме этого, эти связи устраивают в тех панелях, где расположены вертикальные и поперечные горизонтальные связи между фермами покрытия. Их проектируют в виде подкосов, крестов, распорок и ферм.

Изготавливают связи из швеллеров и уголков, крепят к колоннам черными болтами, в зданиях большой грузоподъемностью тяжелого режима работы – монтажной сваркой, чистыми болтами или заклепками.

Подкрановые конструкции

Подвесные пути выполняют обычно из прокатных двутавров типа М с устройством стыков вне опор. Эти пути подвешиваются к нижним поясам несущих конструкций с помощью болтов с последующей обваркой.

Подкрановые конструкции для мостовых кранов состоят из подкрановых балок, воспринимающие вертикальные и местные усилия от катков кранов; тормозных балок или ферм, воспринимающих горизонтальные воздействия кранов; вертикальных и горизонтальных связей , обеспечивающих жесткость и неизменяемость конструкций.

Подкрановые стальные балки в зависимости от статической схемы делятся на разрезные и неразрезные. Преимущественно используются разрезные. Они просты в конструктивном отношении, менее чувствительны к осадкам опор, несложны в изготовлении и монтаже, но по сравнению с неразрезными имеют большую высоту и осложняют условия эксплуатации подкрановых путей и требуют большего расхода стали.

По типу сечения подкрановые балки могут быть сплошного и сквозного (решетчатого) сечения

Подкрановые балки серия 1,426-1 в виде сварного двутавра с симметричными поясами или нет, пролетом 6, 12, 24 м., высоты: при длине 6 м.-800, 1300 мм.; при длине 12 м.-1100,1600 мм. Высота сечения сплошных балок 650-2050 мм с градацией 200 мм. Балки снабжены ребрами жесткости для обеспечения устойчивости стенок, располагаемые через 1,5 м. Балки бывают средние и крайние (располагаются по торцам и у температурного шва, одна из опор отодвинута на 500 мм). Опирание балок на консоли колонн приняты шарнирным: к рядовым – на болтах, к связевым- на болтах и монтажной сварке.

Тормозные конструкции представляют собой связи по верхним поясам подкрановых балок, которые выбираются в зависимости от наличия проходов и пролета балки.

В уровне подкрановых путей пролетов с мостовыми кранами тяжелого режима работы предусматриваются площадки для сквозных проходов . Площадки принимаются шириной не менее 0,5 м. с перилами и лестницами. В местах расположения колонн проходы устраивают сбоку или через проемы в них.

В зависимости от грузоподъемности кранов и типа ходовых колес для подкрановых путей применяются железнодорожные рельсы, рельсы профиля КР или брускового профиля. Крепление рельсов к балкам может быть неподвижным и подвижным.

Неподвижное крепление, допускаемое при легком режиме работы кранов грузоподъемностью до 30 т и среднем ежимее грузоподъемностью до 15 т, обеспечивается приваркой рельса к балке. В большинстве случаев рельсы крепят к балкам подвижным способом, позволяющим производить рихтовку рельсов. На концах подкрановых путей устраивают упоры-амортизаторы, исключающие удары о торцевые стены здания.

В промышленных зданиях используют смешанные каркасы (ж/б колонны и мет. фермы) при условиях:

· необходимости создания больших пролетов;

· для снижения веса от элементов покрытия.

Крепление стальных ферм к ж/б колоннам выполняется с помощью болтовых соединений с последующей обваркой. Для этого в оголовке колонны предусмотрены анкерные болты.

Связи между колоннами.

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Связи, образующие жесткий диск, располагают посередине здания или температурного отсека, учитывая возможность перемещения колонн при температурных деформациях продольных элементов.

Если поставить связи (жесткие диски) по торцам здания, то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают большие температурные усилия F t

При длине здания или температурного блока более 120м между колоннами обычно ставят две системы связевых блоков.

Предельные размеры между вертикальными связями в метрах

Размеры в скобках даны для зданий, эксплуатируемых при расчетных температурах наружного воздуха t= –40° ¸ –65 °С.

Наиболее простая схема связей крестовая, она применяется при шаге колонн до 12 м. Рациональный угол наклона связей , поэтому при небольшом шаге, но большой высоте колонн устанавливают две крестовые связи по высоте нижней части колонны.

В таких же случаях иногда проектируют дополнительную развязку колонн из плоскости рамы распорками.

Вертикальные связи ставят по всем рядам здания. При большом шаге колонн средних рядов, а также чтобы не мешать передаче продукции из пролета в пролет проектируют связи портальной и полупортальной схем.

Вертикальные связи между колоннами воспринимают усилия от ветра W 1 ,и W 2 действующего на торец здания и продольного торможения кранов Т пр.

Элементы крестовых и портальных связей работают на растяжение. Сжатые стержни вследствие большой гибкости выключаются из работы и в расчете их не учитывают. Гибкость растянутых элементов связей, расположенных ниже уровня подкрановых балок не должна превышать 300 для обычных зданий и 200 для зданий с «особым» режимом работы кранов; для связей выше подкрановых балок – соответственно 400 и 300.



Связи по покрытию.

Связи по конструкциям покрытия (шатра) или связи между фермами создают общую пространственную жесткость каркаса и обеспечивают: устойчивость сжатых поясов ферм из их плоскости, перераспределение местных крановых нагрузок, приложенных к одной из рам, на соседние рамы; удобство монтажа; заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Связи по покрытию располагают:

1) в плоскости верхних поясов стропильных ферм – продольные элементы между ними;

2) в плоскости нижних поясов стропильных ферм – поперечные и продольные связевые фермы, а также иногда и продольные растяжки между поперечными связевыми фермами;

3) вертикальные связи между стропильными фермами;

4) связи по фонарям.

Связи в плоскости верхних поясов ферм.

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Ж/б плиты покрытия и прогоны могут рассматриваться как опоры, препятствующие смещению верхних узлов из плоскости фермы при условии, что они закреплены от продольных перемещений связями, расположенными в плоскости кровли. Такие связи (поперечные связевые фермы) целесообразно располагать в торцах цеха, чтобы они вместе с поперечными связевыми фермами по нижним поясам и вертикальными связями между фермами создавали пространственный блок, обеспечивающий жесткость покрытия.

При большей длине здания или температурного блока устанавливают промежуточные поперечные связевые фермы, расстояние между которыми не должно превышать 60 м.

Для обеспечения устойчивости верхнего пояса фермы из ее плоскости в пределах фонаря, где нет кровельного настила, предусматриваются специальные распорки, в коньковом узле фермы обязательны. В процессе монтажа (до установки плит покрытия или прогонов) гибкость верхнего пояса из плоскости фермы должна быть не более 220. Поэтому, если коньковая распорка не обеспечивает этого условия, между ней и распоркой на опоре фермы (в плоскости колонн) ставят дополнительную распорку.

Связи в плоскости нижних поясов ферм

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания.

При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха.

Если поперечная жесткость каркаса недостаточна, краны при движении могут заклиниваться и нарушается нормальная эксплуатация. Чрезмерные колебания каркаса создают неблагоприятные условия для работы кранов и сохранности ограждающих конструкций. Поэтому в однопролетных зданиях большой высоты (H>18 м), в зданиях с мостовыми кранами Q>100 кН, с кранами тяжелого и весьма тяжелого режимов работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Горизонтальные силы F от мостовых кранов воздействуют в поперечном направлении на одну плоскую раму или две-три смежные.

Продольные связевые фермы обеспечивают совместную работу системы плоских рам, вследствие чего поперечные деформации каркаса от действия сосредоточенной силы значительно уменьшаются.

Стойки торцевого фахверка передают ветровую нагрузку F вт в узлы поперечной связевой фермы.

Чтобы избежать вибрации нижнего пояса фермы вследствие динамического воздействия мостовых кранов ограничивается гибкость растянутой части нижнего пояса из плоскости рамы: при кранах с числом циклов нагружения 2×10 6 и более – величиной 250, для прочих зданий – величиной 400. Для сокращения длины растянутой части нижнего пояса в некоторых случаях ставят растяжки, закрепляющие нижний пояс в боковом направлении.

Вертикальные связи между фермами.

Эти связи связывают между собой стропильные фермы и препятствуют их опрокидыванию. Они устанавливаются, как правило, в осях, где установлены связи по нижним и верхним поясам ферм образуя совместно с ними жесткий блок.

В зданиях с подвесным транспортом вертикальные связи способствуют перераспределению между фермами крановой нагрузки приложенной непосредственно к конструкциям покрытия. В этих случаях, а также к стропильным фермам крепят электрические кран – балки значительной грузоподъемности, вертикальные связи между фермами располагают в плоскостях подвески непрерывно по всей длине здания.

Конструктивная схема связей зависит главным образом от шага стропильных ферм.

Связи по верхним поясам стропильных ферм

Связи по нижним поясам стропильных ферм

Для горизонтальных связей при шаге ферм 6м может быть применена крестовая решетка, раскосы которой работают только на растяжение (рис а).

В последнее время в основном применяются связевые фермы с треугольной решеткой (рис б). Здесь раскосы работают как на растяжение, так и на сжатие, поэтому их целесообразно проектировать из труб или гнутых профилей, позволяющих снизить расход металла на 30-40 %.

При шаге стропильных ферм 12 м диагональные элементы связей даже работающие только на растяжение, получаются слишком тяжелыми. Поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12 м, и этим элементом поддерживают диагонали (рис в, г).

Обеспечить крепление продольных связей можно и без решетки связей по верхнему поясу ферм, которая не дает возможности использовать сквозные прогоны. В этом случае в жесткий блок входят элементы покрытия (прогоны, панели), стропильные фермы и часто расположенные вертикальные связи (рис д). Такое решение является в настоящее время типовым. Элементы связи шатра (покрытия) рассчитываются, как правило, по гибкости. Предельная гибкость для сжатых элементов этих связей – 200, для растянутых – 400, (при кранах с числом циклов 2×10 6 и более – 300).

Система конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузки называется фахверком.

Фахверк устраивается для нагруженных стен, а также для внутренних стен и перегородок.

При самонесущих стенах, а также при панельных стенах с длинами панелей, равными шагу колонн, необходимости в конструкциях фахверка нет.

При шаге наружных колонн 12 м и стеновых панелях длиной 6м устанавливаются промежуточные фахверковые стойки.

Фахверк, устанавливаемый в плоскости продольных стен здания, называется продольным фахверком. Фахверк, устанавливаемый в плоскости стен торца здания, называется торцевым фахверком.

Торцовый фахверк состоит из вертикальных стоек, которые устанавливаются через 6 или 12 м. Верхние концы стоек в горизонтальном направлении опирают на поперечную связевую ферму в уровне нижних поясов стропильных ферм.

Чтобы не препятствовать прогибу стропильных ферм от временных нагрузок, опирание стоек фахверка осуществляется с помощью листовых шарниров, представляющих собой тонкий лист t=(8 10мм) шириной 150 200мм, который в вертикальном направлении легко изгибается, не препятствуя прогибу фермы; в горизонтальном направлении он передает усилие. К стойкам фахверка крепят ригели для оконных проемов; при большой высоте стоек в плоскости торцевой стены ставят распорки, уменьшающие их свободную длину.

Стены из кирпича или бетонных блоков устраивают самонесущими, т.е. воспринимающими весь свой вес, и только боковая нагрузка от ветра передается стеной на колонну или стойку фахверка.

Стены из крупнопанельных ж/б плит устанавливаются (навешиваются) на столики колонн или фахверковых стоек (один столик через 3 – 5 плит по высоте). В этом случае фахверковая стойка работает на внецентренное сжатие.

Похожие публикации