Интернет-журнал дачника. Сад и огород своими руками

Относительная продольная деформация. Закон гука при растяжении и сжатии. Определение продольной и поперечной деформации

Пусть в результате деформации первоначальная длина стержня l станет равной. l 1. Изменение длины

называется абсолютным удлинением стержня.

Отношение абсолютного удлинения стержня к его первоначальной длине называется относительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.

Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:

Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона или коэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах . Например, для пробки , для каучука , для стали , для золота .

Продольные и поперечные деформации. Коэффициент Пуассона. Закон Гука

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl , которая называется абсолютным удлинением, и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией . В данном случае относительная деформация называется продольной деформацией , а — относительной поперечной деформацией . Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона : (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

, (3.2)

где Е — коэффициент пропорциональности, называемый модулем нормальной упругости .

Если мы в формулу закона Гука подставим выражение и , тo получим формулу для определения удлинения или укорочения при растяжении и сжатии:

, (3.3)

где произведение ЕF называется жесткостью при растяжении, сжатии.

Продольные и поперечные деформации. Закон Гука

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).

Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δ а - абсолютное сужение; Δ1 > 0; Δ а 0.

В сопротивлении материалов приня­то рассчитывать деформации в относи­тельных единицах: рис.4.13

— относительное удлинение;

Относительное сужение.

Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, — характеристика пластичности материала.

Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и.

Деформация продольная при растяжении (сжатии)

Экспериментально установлено, что отношение поперечной деформации ej. к продольной деформации е при растяжении (сжатии) до предела пропорциональности для данного материала - величина постоянная. Обозначив абсолютную величину данного отношения (X, получим

Опытами установлено, что относительная поперечная деформация ео при растяжении (сжатии) составляет некоторую часть продольной деформации е, т. е.

Отношение поперечной деформации к продольной при растяжении (сжатии), взятое ио абсолютной величине.

В предыдущих главах сопротивления материалов были рассмотрены простые виды деформации бруса - растяжение (сжатие), сдвиг, кручение, прямой изгиб, характерные тем, что в поперечных сечениях бруса возникает лишь один внутренний силовой фактор при растяжении (сжатии) - продольная сила, при сдвиге - поперечная сила, при кручении - крутящий момент, при чистом прямом изгибе - изгибающий момент в плоскости, проходящей через одну из главных центральных осей поперечного сечения бруса. При прямом поперечном изгибе возникает два внутренних силовых фактора- изгибающий момент и поперечная сила, но этот вид деформации бруса относят к простым, так как при расчетах на прочность совместное влияние указанных силовых факторов не учитывают.

При растяжении (сжатии) изменяются также и поперечные размеры. Отношение относительной поперечной деформации е к относительной продольной деформации е является физической константой материала и называется коэффициентом Пуассона V = е /е.

При растяжении (сжатии) бруса его продольные и поперечные размеры получают изменения, характеризуемые деформациями продольной прод (бг) и поперечной (е, е). которые связаны соотношением

Как показывает опыт, при растяжении (сжатии) бруса его объем несколько изменяется при увеличении длины бруса на величину Аг каждая сторона его сечения уменьшается на Будем называть относительной продольной деформацией величину

Продольные и поперечные упругие деформации, возникающие при растяжении или сжатии, связаны друг с другом зависимостью

Итак, рассмотрим брус из изотропного материала. Гипотеза плоских сечений устанавливает такую геометрию деформаций при растяжении сжатии, что все продольные волокна бруса имеют одинаковую деформацию х, независимо от их положения в поперечном сечении F, т.е.

Экспериментальное исследование объемных деформаций проводилось при растяжении и сжатии образцов стеклопластиков при одновременной регистрации на осциллографе К-12-21 изменения продольных, поперечных деформаций материала и усилия при нагружении (на испытательной машине ЦД-10). Испытание до достижения максимальной нагрузки проводилось практически при постоянных скоростях нагружения, что обеспечивалось специальным регулятором, которым снабжена машина.

Как показывают опыты, отношение поперечной деформации ь к продольной деформации е при растяжении или сжатии для данного материала в пределах применения закона Гука есть величина постоянная. Это отношение, взятое по абсолютной величине, называется коэффициентом поперечной деформации или коэффициентом Пуассона

Здесь /р(сж) - продольная деформация при растяжении (сжатии) /и - поперечная деформация при изгибе I - длина деформируемого бруса Р - площадь его поперечного сечения / - момент Инерции площади поперечного сечения образца относительно нейтральной оси - полярный момент инерции Р - приложенное усилие -момент кручения - коэффициент, учи-

Деформация стержня при растяжении или сжатии заключается в изменении его длины и поперечного сечения. Относительные продольная и поперечная деформации определяются соответственно по формулам

Отношение высоты боковых пластин (стенок бака) к ширине в аккумуляторах значительных габаритов, как правило, больше двух, что позволяет рассчитывать стенки бака по формулам цилиндрического изгиба пластин. Крышка бака не имеет жесткого скрепления со стенками и не может помешать их выпучиванию. Пренебрегая влиянием дна, можно свести расчет бака при действии на него горизонтальных усилий к расчету замкнутой статически неопределимой рамки-полоски, выделенной из бака двумя горизонтальными сечениями. Модуль нормальной упругости стеклопласта сравнительно мал, поэтому конструкции из этого материала чувствительны к продольному изгибу. Пределы прочности стеклопласта при растяжении, сжатии и изгибе различны. Сопоставление расчетных напряжений с предельными должно производиться для той деформации, которая является преобладающей.

Введем обозначения, используемые в алгоритме величины с индексами 1,1-1 относятся к текущей и предыдущей итерации на временном этапе т - Ат, т и 2 - соответственно скорость продольной (осевой) деформации при растяжении (i > > 0) и сжатии (2 деформации связаны соотношением

Зависимости (4.21) и (4.31) были проверены на большом числе материалов и при различных условиях нагружения. Испытания были проведены при растяжении-сжатии с частотой около одного цикла в минуту и одного цикла за 10 мин в широком интервале температур. Для измерений деформаций использовались как продольные, так и поперечные деформометры. При этом были испытаны сплошные (цилиндрические и корсетные) и трубчатые образцы из котельной стали 22к (при температурах 20-450 С и асимметриях - 1, -0,9 -0,7 и -0,3, кроме того, образцы сварные и с надрезом), теплоустойчивой стали ТС (при температурах 20-550° С и асимметриях -1 -0,9 -0,7 и -0,3), жаропрочного никелевого сплава ЭИ-437Б (при 700° С), стали 16ГНМА, ЧСН, Х18Н10Т, сталь 45, алюминиевого сплава АД-33 (при асимметриях -1 0 -Ь0,5) и др. Все материалы испытывались в состоянии поставки.

Коэффициент пропорциональности Е, связывающ.и нормальное напряжение и продольную деформацию, на зывается модулем упругости при растяжении-сжатий материала. Этот коэффициент имеет и другие названия модуль упругости 1-го рода, модуль Юнга. Модуль упругости Е является одной из важнейших физических постоянных, характеризующих способность материала сопротивляться упругому деформированию. Чем больше эта величина, тем менее растягивается или сжимается брус при приложении одной и той же силы Р.

Если считать, что на рис. 2-20, а вал О является ведущим, а валы О1 и О2 ведомыми, то при отключении разъединителя тяги ЛЛ1 и Л1Л2 будут работать на сжатие, а при включении - на растяжение. Пока расстояния между осями валов О, 0 и О2 невелики (до 2000 мм), разница между деформацией тяги при растяжении и при сжатии (продольный изгиб) не сказывается на работе синхронной передачи. В разъединителе на 150 кВ расстояние между полюсами 2800 мм, на 330 кВ- 3500 мм, на 750 кВ- 10 000 мм. При таких больших расстояниях между центрами валов и значительных нагрузках, которые они должны передавать, мол / > d. Такая длина выбирается из сообралсений большей устойчивости, так как длинный образец помимо сжатия может испытывать деформацию продольного изгиба, о котором пойдет речь во второй части курса. Образцы из строительных материалов изготовляются в форме куба с размерами 100 X ЮО X ЮО или 150 X X 150 X 150 мм. При испытании на сжатие цилиндрический образец принимает первоначально бочкообразную форму. Если он изготовлен из пластичного материала, то дальнейшее нагружение приводит к расплющиванию образца, если материал хрупкий, то образец внезапно растрескивается.

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. 1.5) для всех его тo eк одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения А/ к первоначальной длине бруса /, т. е. е, = А///. Линейную деформацию при растяжении или сжатии брустев называют обычно относительным удлинением (и ли относительной продольной деформацией) и обозначают е.

Смотреть страницы где упоминается термин Деформация продольная при растяжении (сжатии) : Технический справочник железнодорожника Том 2 (1951) — [ c.11 ]

Продольные и поперечные деформации при растяжении - сжатии. Закон Гука

При приложении к стержню растягивающих нагрузок его первоначальная длина / увеличивается (рис. 2.8). Обозначим приращение длины через А/. Отношение приращения длины стержня к его первоначальной длине называется относительным удлинением или продольной деформацией и обозначается через г:

Относительное удлинение - величина безразмерная, в некоторых случаях ее принято выражать в процентах:

При растяжении изменяются размеры стержня не только в продольном направлении, но и в поперечном - происходит сужение стержня.

Рис. 2.8. Деформация стержня при растяжении

Отношение изменения А а размера поперечного сечения к его первоначальному размеру называется относительным поперечным сужением или поперечной деформацией’.

Опытным путем установлено, что между продольной и поперечной деформациями существует зависимость

где р называется коэффициентом Пуассона и являются постоянной величиной для данного материала.

Коэффициент Пуассона представляет собой, как это видно из приведенной формулы, отношение поперечной деформации к продольной:

Для различных материалов значения коэффициента Пуассона лежат в пределах от 0 до 0,5.

В среднем для металлов и сплавов коэффициент Пуассона приблизительно равен 0,3 (табл. 2.1).

Значение коэффициента Пуассона

При сжатии происходит обратная картина, т.е. в поперечном направлении первоначальные размеры уменьшаются, а в поперечном - увеличиваются.

Многочисленные опыты показывают, что до определенных пределов нагружения для большинства материалов напряжения, возникающие при растяжении или сжатии стержня, находятся в определенной зависимости от продольной деформации. Эта зависимость носит название закона Гука , который может быть сформулирован следующим образом.

В известных пределах нагружения между продольной деформацией и соответствующим нормальным напряжением существует прямо пропорциональная зависимость

Коэффициент пропорциональности Е называется модулем продольной упругости. Он имеет ту же размерность, что и напряжение, т.е. измеряется в Па, МПа.

Модуль продольной упругости - физическая постоянная данного материала, характеризующая способность материала сопротивляться упругим деформациям. Для данного материала величина модуля упругости колеблется в узких пределах. Так, для стали разных марок Е= (1,9. 2,15) 10 5 МПа.

Для наиболее часто применяемых материалов модуль упругости имеет следующие значения в МПа (табл. 2.2).

Значение модуля упругости для наиболее часто применяемых материалов

  • Нравственное и патриотическое воспитание может стать элементом образовательного процесса Разработаны меры по обеспечению патриотического и нравственного воспитания детей и молодежи. Соответствующий законопроект 1 внесен в Госдуму членом Совета Федерации Сергеем […]
  • Как оформить иждивение? Вопросы необходимости оформления иждивения возникают не часто, поскольку большая часть иждивенцев являются таковыми в силу закона, и проблема установления факта иждивения отпадает сама по себе. Вместе с тем, в ряде случаев необходимость оформления […]
  • Срочное оформление и получение загранпаспорта Никто не застрахован от ситуации, когда резко возникает необходимость быстро оформить загранпаспорт в Москве или любом другом российском городе. Что делать? Куда обращаться? И во сколько обойдётся подобная услуга? Необходимо […]
  • Налоги в Швеции и перспективы развития бизнеса Прежде чем отправиться в Швецию в качестве бизнес-эмигранта, нелишним будет узнать больше о налоговой системе страны. Налоги в Швеции – это сложная, и, как сказали бы наши соотечественники, мудрёная система. Некоторых она […]
  • Налог на выигрыш: размер в 2017 году За предыдущие годы можно четко проследить тенденцию, которой придерживаются государственные органы власти. Принимаются все более жесткие меры по контролю доходов игрового бизнеса, а также населения, получающего выигрыши. Так, в 2014 […]
  • Уточнение исковых требований После принятия судом иска и даже в процессу судебного разбирательства истец имеет право заявить уточнение исковых требований. В порядке уточнений можно указать новые обстоятельства или дополнить старые, увеличить или уменьшить сумму иска, […]
  • Как правильно удалять программы с компьютера? Казалось бы, что сложного в удалении программ с компьютера? Но я знаю, что множество начинающих пользователей испытывают с этим проблемы. Вот, например, выдержка из одного письма, которое я получил: «…У меня к Вам такой вопрос: […]
  • ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ С 01.01.2002 трудовые пенсии назначаются и выплачиваются в соответствии с Федеральным законом «О трудовых пенсиях в Российской Федерации» от 17.12.2001 № 173-ФЗ. При установлении размера трудовой пенсии согласно названному […]

Изменение размеров, объема и возможно формы тела, при внешнем воздействии на него, называют в физике деформацией. Тело деформируется при растяжении, сжатии или (и), при изменении его температуры.

Деформация появляется тогда, когда разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому возникают силы упругости.

Пусть прямой брус, длиной и, имеющий постоянное сечение, закреплен одним концом. За другой конец его растягивают, прикладывая силу (рис.1). При этом тело удлиняется на величину , которую называют абсолютным удлинением (или абсолютной продольной деформацией).

В любой точке рассматриваемого тела имеется одинаковое напряженное состояние. Линейную деформацию () при растяжении и сжатии подобных объектов называют относительным удлинением (относительной продольной деформацией):

Относительная продольная деформация

Относительная продольная деформация - величина безразмерная. Как правило относительное удлинение много меньше единицы ().

Деформацию удлинения обычно считают положительной, а деформацию сжатия отрицательной.

Если напряжение в брусе не превышает некоторого предела, экспериментально установлена зависимость:

где - продольная сила в поперечных сечениях бруса; S - площадь поперечного сечения бруса; E - модуль упругости (модуль Юнга) - физическая величина, характеристика жёсткости материала. Принимая о внимание то, что нормальное напряжение в поперечном сечении ():

Абсолютное удлинение бруса можно выразить как:

Выражение (5) является математической записью закона Р. Гука, который отражает прямую зависимость между силой и деформацией при небольших нагрузках.

В следующей формулировке, закон Гука используется не только при рассмотрении растяжения (сжатия) бруса: Относительная продольная деформация прямо пропорциональна нормальному напряжению.

Относительная деформация при сдвиге

При сдвиге относительную деформацию характеризуют при помощи формулы:

где - относительный сдвиг; - абсолютный сдвиг слоев параллельных по отношению друг к другу; h — расстояние между слоями; - угол сдвига.

Закон Гука для сдвига записывают как:

где G - модуль сдвига, F - сила, вызывающая сдвиг, параллельная сдвигающимся слоям тела.

Примеры решения задач

ПРИМЕР 1

Задание Каково относительное удлинение стального стержня, если его верхний конец закреплен неподвижно (рис.2)? Площадь поперечного сечения стержня . К нижнему концу стержня прикреплен груз массой кг. Считайте, что собственная масса стержня много меньше, чем масса груза.

Решение Сила, которая заставляет стержень растягиваться, равна силе тяжести груза, который находится на нижнем конце стержня. Эта сила действует вдоль оси стержня. Относительное удлинение стержня найдем как:

где . Прежде чем проводить расчет, следует найти в справочниках модуль Юнга для стали. Па.

Ответ

ПРИМЕР 2

Задание Нижнее основание металлического параллелепипеда с основанием в виде квадрата со стороной a и высотой h закреплено неподвижно. На верхнее основание параллельно основанию действует сила F (рис.3). Какова относительная деформация сдвига ()? Модуль сдвига (G) считайте известным.

Рассмотрим прямой брус постоянного сечения длиной (рис. 1.5), заделанный одним концом и на­груженный на другом конце растягивающей силой Р. Под действием силы Р брус удлиняется на некото­рую величину , которая называется полным (или абсолютным) удлинением (абсолютной продольной деформацией).

Рис. 1.5. Деформация бруса

В любых точках рассматриваемого бруса имеется одинаковое напряжённое состояние и, следова­тельно, линейные деформации для всех его точек одинаковы. По­этому значение е можно определить как отношение абсолютного удлинения к первоначальной длине бруса , т.е.

Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:

где N- продольная сила в поперечных сечениях бруса; F- площадь поперечного сечения бруса; Е- ко­эффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса σ = N/F, получаем ε = σ/Е. От­куда σ = εЕ.

Абсолютное удлинение бруса выражается формулой

Более общей является следующая формулировка закона Гука: относительная продольная деформа­ция прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука использует­ся не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е называется модулем упругости первого рода. Это физическая постоянная материала, характеризующая его жёсткость. Чем больше значение Е, тем меньше при прочих равных условиях продольная деформация. Модуль упругости выражается в тех же единицах, что и напряжение, т.е. в пас­калях (Па) (сталь Е=2* 10 5 МПа, медь Е= 1 * 10 5 МПа).

Произведение EF называется жёсткостью поперечного сечения бруса при растяжении и сжатии.

Кроме продольной деформации при действии на брус сжимающей или растягивающей силы наблю­дается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить В, а после приложения этих сил В - ∆В, то величина ∆В будет обозначать абсолютную по­перечную деформацию бруса.

Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная попе­речная деформация прямо пропорциональна относительной продольной деформации, но имеет обрат­ный знак:

Коэффициент пропорциональности ц зависит от материала бруса. Он называется коэффициентом поперечной деформации (или коэффициентом Пуассона ) и представляет собой отношение относитель­ной поперечной деформации к продольной, взятое по абсолютной величине, т.е. коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.



Коэффициент Пуассона определяется экспериментально. Для различных материалов он имеет зна­чения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффици­ент Пуассона равен 0,25...0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он


имеет значе­ния от 0,23 до 0,36.

Рис. 1.6. Брус переменного поперечного сечения

Определение величины поперечного сечения стержня выполняется на основании условия прочно­сти

где [σ] - допускаемое напряжение.

Определим продольное перемещение δ а точки а оси бруса, растянутого си­лой Р( рис. 1.6).

Оно равно абсолютной деформации части бруса ad, заключённой между заделкой и сечением, проведённым через точку d, т.е. продольная деформация бруса определяется по формуле

Эта формула применима лишь, когда в пределах всего участка длиной продольные силы N и жёсткости EF попе­речных сечений бруса постоянны. В рассматриваемом случае на участке ab продольная сила N равна нулю (собственный вес бруса не учитываем), а на участке bd она равна Р, кроме того, площадь поперечного сечения бруса на участке ас отличается от площади сечения на участке cd. Поэтому продольную деформацию участка ad следует определять как сумму продольных деформаций трёх участков ab, Ьс и cd, для каждого из которых значения N и EF постоянны по всей его длине:

Продольные силы на рассматриваемых участках бруса

Следовательно,

Аналогично можно определить перемещения δ любых точек оси бруса, а по их значениям построить эпюру продольных перемещений (эпюруδ), т.е. график, изображающий изменение этих перемещений по длине оси бруса.

4.2.3. Условия прочности. Расчет на жёсткость.

При проверке напряжений площади поперечных сечений F и продольные силы известны и расчёт заключается в вычислении расчётных (фактических) напряжений σ в характерных сечениях элементов. Полученное при этом наибольшее напряжение сравнивают затем с допускаемым:

При подборе сечений определяют требуемые площади [F] поперечных сечений элемента (по из­вестным продольным силам N и допускаемому напряжению [σ]). Принимаемые площади сечений F должны удовлетворять условию прочности, выраженному в следующем виде:

При определении грузоподъёмности по известным значениям F и допускаемому напряжению [σ] вычисляют допускаемые величины [N] продольных сил:

По полученным значениям [N] за­тем определяются допускаемые величины внешних нагрузок [P ].

Для этого случая условие прочности имеет вид

Величины нормативных коэффициентов запаса прочности устанавливаются нормами. Они зависят от класса конструкции (капитальная, временная и т.п.), намечаемого срока её эксплуатации, нагрузки (статическая, циклическая и т.п.), возможной неоднородности изготовления материалов (например, бе­тона), от вида деформации (растяжение, сжатие, изгиб и т.д.) и других факторов. В ряде случаев прихо­дится снижать коэффициент запаса в целях уменьшения веса конструкции, а иногда увеличивать коэф­фициент запаса - при необходимости учитывать износ трущихся частей машин, коррозию и загнивание материала.

Величины нормативных коэффициентов запаса для различных материалов, сооружений и нагрузок имеют в большинстве случаев значения: - 2,5...5 и - 1,5...2,5.

Под проверкой жёсткости элемента конструкции, находящегося в состоянии чистого растяжения - сжатия, понимается поиск ответа на вопрос: достаточны ли значения жёсткостных характеристик эле­мента (модуля упругости материала Е и площади поперечного сечения F), чтобы максимальное из всех значений перемещений точек элемента, вызванных внешними силами, u max не превысило некоторого заданного предельного значения [u]. Считается, что при нарушении неравенства u max < [u] конструкция переходит в предельное состояние.

Лекция №5

Тема: « Растяжение и сжатие »

Вопросы:

1. Нормальные напряжения при растяжении и сжатии

2. Определение продольной и поперечной деформации. Закон Гука

4. Температурные напряжения

5. Монтажные напряжения

1. Нормальные напряжения при растяжении и сжатии

Если на поверхность призматического стержня нанести сетку линий, параллельных и перпендикулярных оси стержня, и приложить к нему растягивающую силу, то можно убедиться в том, что линии сетки и после деформации останутся взаимно перпендикулярными (см. рис. 1).

Рис. 1

Все горизонтальные линии, например, cd переместятся вниз, оставаясь горизонтальными и прямыми. Можно предположить также, что и внутри стержня будет такая же картина, т.е. "поперечные сечения стержня, плоские и нормальные к его оси до деформации, останутся плоскими и нормальными к оси и после деформации". Эта важная гипотеза носит название гипотезы плоских сечений или гипотезы Бернулли. Формулы, полученные на основе этой гипотезы, подтверждаются результатами опытов.

Такая картина деформаций дает основание считать, что в поперечных сечениях действуют только нормальные напряжения, одинаковые во всех точках сечения, а касательные напряжения равны нулю. Если бы возникали касательные напряжения, то наблюдалась бы угловая деформация, и углы между продольными и поперечными линиями перестали бы быть прямыми. Если бы нормальные напряжения были не одинаковыми во всех точках сечения, го там, где напряжения выше, была бы и больше деформация, а следовательно, поперечные сечения не были бы плоскими и параллельными. Приняв гипотезу плоских сечений мы устанавливаем, что
.

Поскольку продольная сила является равнодействующей внутренних сил
, возникающих на бесконечно малых площадках (см. рис 3.2) ее можно представить в виде:

Рис. 2

Постоянные величины можно выносить за знак интеграла:

где А  площадь поперечного сечения.

Получаем формулу для нахождения нормальных напряженней при растяжении или сжатии:

(1)

Это одна из важнейших формул в сопротивлении материалов поэтому ее выделим в рамочки и также будем поступать в дальнейшем.

При растяжении положительно, при сжатии  отрицательно.

Если на брус действует только одна внешняя сила F , то

N = F ,

и напряжения можно определять по формуле:

2. Определение продольной и поперечной деформации

В упругой стадии работы большинства конструкционных материалов напряжения и деформации связаны прямой зависимостью, называемой законом Гука:

(2)

где Е  модуль продольной упругости или модуль Юнга, измеряется в МПа, характеризует жесткость материала, т.е. способность сопротивляться деформациям, его значения приведены в таблицax справочника;

 относительная продольная деформация, величина безразмерная, так как:

; (3)

 абсолютное удлинение стержня, м;

l  первоначальная длина, м.

Чем выше значение модуля продольной упругости Е, тем меньше деформация. Например, для стали Е=2,110 5 МПа, а для чугуна Е=(0,75…1,6)10 5 МПа, поэтому элемент конструкции из чугуна при одинаковых прочих условиях получит большую деформацию, чем со стали. Здесь не надо путать с тем, что доведенный до разрыва стержень из стали будет иметь значительно большую деформацию, чем чугунный. Речь идет не об предельной деформации, а об деформации в упругой стадии, т.е. без возникновения пластических деформаций, и при одинаковой нагрузке.

Преобразуем закон Гука, заменив из уравнения (3.3):

Подставим значение из формулы (1):

(4)

Мы получили формулу для абсолютного удлинения (укорочения) стержня. При растяжении
положительная, при сжатии  отрицательная. Произведение ЕА называют жесткостью бруса.

При растяжении стержень становится тоньше, при сжатии  толще. Изменение размеров поперечного сечения называется поперечной деформацией. Например, у прямоугольного сечения до нагружения были ширина b и высота сечения h , а после нагружения  b 1 и h 1 . Относительная поперечная деформация для ширины сечения:

для высоты сечения:

У изотропных материалов свойства одинаковы во всех направлениях. Поэтому:

При растяжении поперечная деформация отрицательна, при сжатии  положительна.

Отношение поперечной деформации к продольной называется коэффициентом поперечной деформации или коэффициентом Пуассона:

(5)

Экспериментально установлено, что в упругой стадии работы любого материала значение и постоянно. Оно лежит в пределах 00,5 и для конструкционных материалов дается в таблицах справочника.

Из зависимости (5) можно получить следующую формулу:

(6)

При растяжении (сжатии) поперечные сечения бруса перемещаются в продольном направлении. Перемещение является следствием деформации, но эти два понятия нужно четко разграничивать. Для стержня (см. рис. 3) определим величину деформации и построим эпюру перемещений.

Рис. 3

Как видно из рисунка отрезок стержня АВ не растягивается, но перемещение получит, так как удлинится отрезок СВ. Его удлинение равно:

Перемещения поперечных сечений обозначим через . В сечении С перемещение равно нулю. От сечения С до сечения В перемещение равно удлинению, т.е. возрастает пропорционально до
в сечении В. Для сечений от В до А перемещения одинаковы и равны
, так как этот отрезок стержня не деформируется.

3. Статически неопределимые задачи

Статически неопределимыми принято считать системы, усилия в которых нельзя определить с помощью только уравнений статики. Все статически неопределимые системы имеют "лишние" связи в виде дополнительных закреплений, стержней и других элементов. "Лишними" такие связи называют потому, что они не являются необходимыми с точки зрения обеспечения равновесия системы или ее геометрической неизменяемости, и их устройство преследует конструктивные или эксплуатационные цели.

Разность между количеством неизвестных и количеством независимых уравнений равновесия, которые можно составить для данной системы, характеризует число лишних неизвестных или степень статической неопределимости.

Статически неопределимые системы решают путем составления уравнений перемещения определенных точек, количество которых должно быть равно степени неопределимости системы.

Пусть на стержень, жестко заделанный обоими концами, действует сила F (см. рис. 4). Определим реакции опор.

Рис. 4

Реакции опор направим влево, так как сила F действует вправо. Поскольку вес силы действуют по одной линии можно составить лишь одно уравнение статического равновесия:

-B+F-C=0;

Итак, две неизвестные реакции опор В и С и одно уравнение статического равновесия. Система один раз статически неопределимая. Следовательно, для ее решения нужно составить одно дополнительное уравнение, основанное на перемещениях точки С. Мысленно отбросим правую опору. От силы F левая часть стержня ВД будет растягиваться и сечение С сместится вправо на величину этой деформации:

От реакции опоры С стержень будет сжиматься и сечение переместится влево на величину деформации всего стержня:

Опора не позволяет сечению С перемещаться ни влево, ни вправо, поэтому сумма перемещений от сил F и С должна равняться нулю:

|

Подставив значение С в уравнение статического равновесия, определим вторую реакцию опоры:

4. Температурные напряжения

В статически неопределимых системах при изменении температуры могут возникать напряжения. Пусть стержень, жестко заделанный с двух концов нагревается на температуру
град. (см. рис. 5).

Рис. 5

При нагревании тела расширяются, и стержень будет стремиться удлиниться на величину:

где  коэффициент линейного расширения,

l  первоначальная длина.

Опоры не дают возможности стержню удлиниться, поэтому стержень сжимается на величину:

Согласно формуле (4):

=
;

поскольку:

(7)

Как видно из формулы (7) температурные напряжения не зависят от длины стержня, а зависят лишь от коэффициента линейного расширения, модуля продольной упругости и изменения температуры.

Температурные напряжения могут достигать больших значений. Для их уменьшения в конструкциях предусматриваются специальные температурные зазоры (например, зазоры в стыках рельсов) или компенсационные устройства (например, колена в трубопроводах).

5. Монтажные напряжения

Элементы конструкции могут иметь отклонения в размерах при изготовлении (например, из-за сварки). При сборке размеры не совпадают (например, отверстия под болты), и прикладываются усилия, чтобы собрать узлы. В результате в элементах конструкции возникают внутренние усилия без приложения внешней нагрузки.

Пусть между двух жестких заделок вставлен стержень, длина которого на величину а больше расстояния между опорами (см. рис. 6). Стержень будет испытывать сжатие. Определим напряжения, используя формулу (4):

(8)

Рис. 6

Как видно из формулы (8) монтажные напряжения прямо пропорциональны погрешности в размерах а . Поэтому желательно иметь а=0 , особенно для стержней небольшой длины, так как обратно пропорционально длине.

Однако в статически неопределимых системах к монтажным напряжениям специально прибегают, чтобы повысить несущую способность конструкции.

План лекции

1. Деформации, закон Гука при центральном растяжении-сжатии стержней.

2. Механические характеристики материалов при центральном растяжении и сжатии.

Рассмотрим стержневой элемент конструкции в двух состояниях (см. рисунок 25):

Внешняя продольная сила F отсутствует, начальная длина стержня и его поперечный размер равны соответственно l и b , площадь сечения А одинакова по всей длине l (внешний контур стержня показан сплошными линиями);

Внешняя продольная растягивающая сила, направленная вдоль центральной оси, равна F , длина стержня получила приращение Δl , при этом его поперечный размер уменьшился на величину Δb (внешний контур стержня в деформированном положении показан пунктирными линиями).

l Δl

Рисунок 25. Продольно-поперечная деформация стержня при его центральном растяжении.

Приращение длины стержня Δl называется его абсолютной продольной деформацией, величина Δb – абсолютной поперечной деформацией. Величина Δl может трактоваться как продольное перемещение (вдоль оси z) концевого поперечного сечения стержня. Единицы измерения Δl и Δb те же, что и начальные размеры l и b (м, мм, см). В инженерных расчетах применяется следующее правило знаков для Δl : при растяжении участка стержня происходит увеличение его длины и величина Δl положительна; если же на участке стержня с начальной длиной l возникает внутренняя сжимающая сила N , то величина Δl отрицательна, т. к. происходит отрицательное приращение длины участка.

Если абсолютные деформации Δl и Δb отнести к начальным размерам l и b , то получим относительные деформации:


– относительная продольная деформация;

– относительная поперечная деформация.

Относительные деформации и являются безразмерными (как правило,

очень малыми) величинами, их именуют обычно е. о. д. – единицами относительных деформаций (например, ε = 5,24·10 -5 е. о. д.).

Абсолютное значение отношения относительной продольной деформации к относительной поперечной деформации является очень важной константой материала, называемой коэффициентом поперечной деформации или коэффициентом Пуассона (по фамилии французского ученого)

Как видно коэффициент Пуассона количественно характеризует соотношение между величинами относительной поперечной деформацией и относительной продольной деформацией материала стержня при приложении внешних сил вдоль одной оси. Значения коэффициента Пуассона определяются экспериментально и для различных материалов приводятся в справочниках. Для всех изотропных материалов значения лежит в пределах от 0 до 0,5 (для пробки близко к 0, для каучука и резины близко к 0,5). В частности, для прокатных сталей и алюминиевых сплавов в инженерных расчетах обычно принимается , для бетона .



Зная значение продольной деформации ε (например, в результате замеров при проведении экспериментов) и коэффициент Пуассона для конкретного материала (который можно взять из справочника) можно вычислить значение относительной поперечной деформации

где знак минус свидетельствует о том, что продольные и поперечные деформации всегда имеют противоположные алгебраические знаки (если стержень удлиняется на величину Δl растягивающей силой, то продольная деформация положительна, т. к. длина стержня получает положительное приращение, но при этом поперечный размер b уменьшается, т. е. получает отрицательное приращение Δb и поперечная деформация отрицательна; если же стержень будет сжиматься силой F , то, наоборот, продольная деформация станет отрицательной, а поперечная – положительной).

Внутренние усилия и деформации, возникающие в элементах конструкций под действием внешних нагрузок, представляют собой единый процесс, в котором все факторы взаимосвязаны между собой. Прежде всего, нас интересует взаимосвязь между внутренними усилиями и деформациями, в частности, при центральном растяжении-сжатии стержневых элементов конструкций. При этом, как и выше, будем руководствоваться принципом Сен-Венана: распределение внутренних усилий существенно зависит от способа приложения внешних сил к стержню лишь вблизи места нагружения (в частности, при приложении сил к стержню через малую площадку), а в частях, достаточно удаленных от мест


приложения сил распределение внутренних усилий зависит только от статического эквивалента этих сил, т. е. при действии растягивающих или сжимающих сосредоточенных сил будем считать, что в большей части объема стержня распределение внутренних сил будет равномерным (это подтверждается многочисленными экспериментами и опытом эксплуатации конструкций).

Английским ученым Робертом Гуком еще в 17-м веке была установлена прямая пропорциональная (линейная) зависимость (закон Гука) абсолютной продольной деформации Δl от растягивающей (или сжимающей) силы F . В 19-м веке английским ученым Томасом Юнгом сформулирована идея о том, что для каждого материала существует постоянная величина (названная им модулем упругости материала), характеризующая его способность сопротивляться деформированию при действии внешних сил. При этом Юнг первый указал на то, что линейный закон Гука справедлив только в определенной области деформирования материала, а именно – при упругих его деформациях .

В современном представлении применительно к одноосному центральному растяжению-сжатию стержней закон Гука используется в двух видах.

1) Нормальное напряжение в поперечном сечении стержня при центральном растяжении прямо пропорционально его относительной продольной деформации

, (1-й вид закона Гука),

где Е – модуль упругости материала при продольных деформациях, значения которого для различных материалов определены экспериментальным путем и занесены в справочники, которыми технические специалисты пользуются при проведении различных инженерных расчетов; так, для прокатных углеродистых сталей, широко применяемых в строительстве и машиностроении ; для алюминиевых сплавов ; для меди ; для других материалов значение Е всегда можно найти в справочниках (см., например, «Справочник по сопротивлению материалов» авторов Писаренко Г.С. и др.). Единицы измерения модуля упругости Е те же, что и единицы измерения нормальных напряжений, т. е. Па , МПа , Н/мм 2 и др.

2) Если в записанном выше 1-м виде закона Гука нормальное напряжение в сечении σ выразить через внутреннюю продольную силу N и площадь поперечного сечения стержня А , т. е. , а относительную продольную деформацию – через начальную длину стержня l и абсолютную продольную деформацию Δl , т. е. , то после простых преобразований получим формулу для практических расчетов (продольная деформация прямо пропорциональна внутренней продольной силе)

(2-й вид закона Гука). (18)

Из этой формулы следует, что с увеличением значения модуля упругости материала Е абсолютная продольная деформация стержня Δl уменьшается. Таким образом, сопротивляемость элементов конструкций деформациям (их жесткость) можно увеличить путем применения для них материалов с более высокими значениями модуля упругости Е . Среди широко применяемых в строительстве и машиностроении конструкционных материалов высоким значением модуля упругости Е обладают стали. Диапазон изменения величины Е для разных марок сталей небольшой: (1,92÷2,12)·10 5 МПа . У алюминиевых сплавов, например, величина Е примерно в три раза меньше, чем у сталей. Поэтому для


конструкций, к жесткости которых предъявляются повышенные требования, предпочтительными материалами являются стали.

Произведение называют параметром жесткости (или просто жесткостью) сечения стержня при его продольных деформациях (единицы измерения продольной жесткости сечения – Н , кН, МН ). Величина с = Е·А/l называется продольной жесткостью стержня длиной l (единицы измерения продольной жесткости стержня с Н/м , кН/м ).

Если стержень имеет несколько участков (n ) с переменной продольной жесткостью и сложной продольной нагрузкой (функция внутренней продольной силы от координаты z сечения стержня), то суммарная абсолютная продольная деформация стержня определится по более общей формуле

где интегрирование проводится в пределах каждого участка стержня длиной , а дискретное суммирование – по всем участкам стержня от i = 1 до i = n .

Закон Гука широко применяется в инженерных расчетах конструкций, поскольку большинство конструкционных материалов в процессе эксплуатации могут воспринимать весьма значительные напряжения, не разрушаясь в пределах упругих деформаций.

При неупругих (пластических или упруго-пластических) деформациях материала стержня прямое применение закона Гука неправомерно и, следовательно, вышеприведенные формулы использовать нельзя. В этих случаях следует применять другие расчетные зависимости, которые рассматриваются в специальных разделах курсов «Сопротивление материалов», «Строительная механика», «Механика твердого деформируемого тела», а также в курсе «Теория пластичности».

Похожие публикации