Интернет-журнал дачника. Сад и огород своими руками

Поперечный изгиб. Общие понятия. Чистый изгиб. Поперечный изгиб Какой изгиб называют прямым

Силы, действующие перпендикулярно к оси бруса и располо­женные в плос-кости, проходящей через эту ось, вызывают дефор­мацию, называемую попереч-ным изгибом . Если плоскость действия упомянутых сил главная плоскость, то имеет место прямой (плоский) поперечный изгиб. В противном случае изгиб называет­ся косым поперечным. Брус, подверженный преимущественно из­гибу, называется балкой 1 .

По существу поперечный изгиб есть сочетание чистого изги­ба и сдвига. В связи с искривлением поперечных сечений из-за неравномерности распределе-ния сдвигов по высоте возникает вопрос о возможности применения формулы нормального напряжения σ х , выведенной для чистого изгиба на основании гипотезы плоских сечений.

1 Однопролетная балка, имеющая по концам соответственно одну цилиндрическую неподвижную опору и одну цилиндрическую подвижную в направлении оси балки, называется простой . Балка с одним защемленным и другим свободным концом называется консолью . Простая балка, имеющая одну или две части, свешивающиеся за опору, называется консольной .

Если, кроме того, сечения взяты далеко от мест приложения нагрузки (на расстоянии, не меньшем половины высоты сечения бруса), то можно, как и в случае чистого изгиба, считать, что волокна не оказывают давления друг на друга. Значит, каждое волокно испытывает одноосное растяжение или сжатие.

При действии распределенной нагрузки поперечные силы в двух смежных сечениях будут отличаться на величину, рав­ную qdx . Поэтому искривления сечений будут также несколько отличаться. Кроме того, волокна будут оказывать давление друг на друга. Тщательное исследование вопроса показывает, что если длина бруса l достаточно велика по сравнению с его высотой h (l / h > 5), то и при распределенной нагрузке указанные факторы не оказывают существенного влияния на нормальные напряжения в поперечном сечении и потому в практических расчетах могут не учитываться.

а б в

Рис. 10.5 Рис. 10.6

В сечениях под сосредоточенными грузами и вблизи них распределение σ х отклоняется от линейного закона. Это отклонение, носящее местный характер и не сопровождающееся увеличением наибольших напряжений (в крайних волокнах), на практике обычно не принимают во внимание.

Таким образом, при поперечном изгибе (в плоскости ху ) нор­мальные напряжения вычисляются по формуле

σ х = [М z (x )/I z ]y .

Если проведем два смежных сечения на участке бруса, свободном от нагрузки, то поперечная сила в обоих сечениях будет одинакова, а значит, одинаково и искривление сечений. При этом какой-либо отрезок волокна ab (рис.10.5) переместится в новое положение a"b" , не претерпев дополнительного удлинения, и следовательно, не меняя величину нормального напряжения.

Определим касательные напряжения в поперечном сечении через парные им напряжения, действующие в продольном сечении бруса.

Выделим из бруса элемент длиной dx (рис. 10.7 а). Проведём горизонта-льное сечение на расстоянии у от нейтральной оси z , разделившее элемент на две части (рис. 10.7) и рассмотрим равновесие верхней части, имеющей основа-

ние шириной b . В соответствии с законом парности касательных напряжений, напряжения действующие в продольном сечении равны напряжениям, действующим в поперечном сечении. С учётом этого в предположении о том, что касательные напряжения в площадке b распределены равномерно ис-пользуем условие ΣХ = 0, получим:

N * - (N * +dN *)+

где: N * - равнодействующая нормальных сил σв левом поперечном сече-нии элемента dx в пределах “отсечённой” площадки А * (рис. 10.7 г):

где: S=- статический момент “отсечённой” части поперечного сече-ния (заштрихованная площадь на рис. 10.7 в). Следовательно, можно записать:

Тогда можно записать:

Эта формула была получена в XIX веке русским ученым и инженером Д.И. Журавским и носит его имя. И хотя эта формула приближенная, так как усредняет напряжение по ширине сечения, но полученные результаты расчета по ней, неплохо согласуются с экспериментальными данными.

Для того, чтобы определить касательные напряжения в произвольной точке сечения отстоящей на расстоянии y от оси z следует:

Определить из эпюры величину поперечной силы Q, действующей в сечении;

Вычислить момент инерции I z всего сечения;

Провести через эту точку плоскость параллельную плоскости xz и определить ширину сечения b ;

Вычислить статический момент отсеченной площади Sотносительно главной центральной оси z и подставить найденные величины в формулу Жура-вского.

Определим в качестве примера касательные напряжения в прямоуголь-ном поперечном сечении (рис. 10.6, в). Статический момент относительно оси z части сечения выше линии 1-1, на которой определяется напряжения запишем в виде:

Он изменяется по закону квадратной параболы. Ширина сечения в для прямоугольного бруса постоянна, то параболическим будет и закон изменения касательных напряжений в сечении (рис.10.6, в). При y =и у = − каса-тельные напряжения равны нулю, а на нейтральной оси z они достигают наибольшего значения.

Для балки круглого поперечного сечения на нейтральной оси имеем.

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием , т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб , при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы. При прямом поперечном изгибе вводятся несколько гипотез:

1) Поперечные сечения балки, плоские до деформации, остаются плоскими и ортогональными к нейтральному слою после деформации (гипотеза плоских сечений или гипотеза Я. Бернулли). Эта гипотеза выполняется при чистом изгибе и нарушается при возникновении поперечной силы, касательных напряжений, и появлением угловой деформации.

2) Взаимное давление между продольными слоями отсутствует (гипотеза о ненадавливании волокон). Из этой гипотезы следует, что продольные волокна испытывают одноосное растяжение или сжатие, следовательно, при чистом изгибе справедлив закон Гука .

Стержень, испытывающий изгиб, называют балкой . При изгибе одна часть волокон растягивается, другая часть – сжимается. Слой волокон, находящийся между растянутыми и сжатыми волокнами, называют нейтральным слоем , он проходит через центр тяжести сечений. Линию пересечения его с поперечным сечением балки называют нейтральной осью . На основе введенных гипотез при чистом изгибе получена формула для определения нормальных напряжений, которая применяется и при прямом поперечном изгибе. Нормальное напряжение можно найти с помощью линейной зависимости (1), в которой отношение изгибающего момента к осевому моменту инерции (
) в конкретном сечении является величиной постоянной, а расстояние (y ) вдоль оси ординат от центра тяжести сечения до точки, в которой определяют напряжение, меняется от 0 до
.

. (1)

Для определения касательного напряжения при изгибе в 1856г. русским инженером – строителем мостов Д.И. Журавским была получена зависимость

. (2)

Касательное напряжение в конкретном сечении не зависит от отношения поперечной силы к осевому моменту инерции (
), т.к. эта величина в пределах одного сечения не меняется, а зависит от отношения статического момента площади отсеченной части к ширине сечения на уровне отсеченной части (
).

При прямом поперечном изгибе возникают перемещения: прогибы (v ) и углы поворотов (Θ ) . Для их определения используют уравнения метода начальных параметров (3), которые получены путем интегрирования дифференциального уравнения изогнутой оси балки (
).

Здесь v 0 , Θ 0 , М 0 , Q 0 – начальные параметры, x расстояние от начала координат до сечения, в котором определяется перемещение, a – расстояние от начала координат до места приложения или начала действия нагрузки.

Расчет на прочность и жесткость производят с помощью условий прочности и жесткости. С помощью этих условий можно решать поверочные задачи (выполнять проверку выполнения условия), определять размер поперечного сечения или подбирать допустимое значение параметра нагрузки. Условий прочности различают несколько, некоторые из них приведены ниже. Условие прочности по нормальным напряжениям имеет вид:

, (4)

здесь
момент сопротивления сечения относительно оси z, R – расчетное сопротивление по нормальным напряжениям.

Условие прочности по касательным напряжениям выглядит как:

, (5)

здесь обозначения те же, что и в формуле Журавского, а R s – расчетное сопротивление срезу или расчетное сопротивление по касательным напряжениям.

Условие прочности по третьей гипотезе прочности или гипотезе наибольших касательных напряжений можно записать в следующем виде:

. (6)

Условия жесткости можно записать для прогибов (v ) и углов поворота (Θ ) :

где значения перемещений в квадратных скобках являются допустимыми.

Пример выполнения индивидуального задания № 4 (срок 2-8 неделя)

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент М х (рис. 1). Так как Q y =dM x /dz=0, то M x =const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент M х по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.

Рис.1. Связь внутреннего усилия и напряжения

Рис.2. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (M х =сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а ), нейтральный слой (п—п) описывается дугой окружности.

Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу. Это условие не отразится на конечном результате (чтобы прямой изгиб был возможен, необходимо совпадение оси Оу с главной осью инерции поперечного сечения, которая и является осью симметрии). Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно.


а ) расчетная схема, б ) деформации и напряжения

Рис.3. Фрагмент чистого изгиба бруса

Рассмотрим вырезанный из стержня элемент длиной dz , который в масштабе с искаженными в интересах наглядности пропорциями изображен на рис. 3, б . Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным.

Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у:

Из подобия треугольников С00 1 и 0 1 ВВ 1 следует, что

Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений

Эта формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя и положение нейтральной оси Ох , от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы

Подставляя в это уравнение выражение (2)

и учитывая, что , получаем, что

Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси. Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения.

Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной). Подставляя в уравнение связки выражение для. напряжений, получим:

и учитывая, что где J x —главный центральный момент инерции относительно оси Ох, для кривизны нейтрального слоя получаем формулу

Рис.4. Распределение нормальных напряжений

которая была впервые получена Ш. Кулоном в 1773 году. Для согласования знаков изгибающего момента М х и нормальных напряжений в правой части формулы (5) ставится знак минус, так как при M х >0 нормальные напряжения при y >0 оказываются сжимающими. Однако в практических расчетах удобнее, не придерживаясь формального правила знаков, определять напряжения по модулю, а знак ставить по смыслу. Нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси (рис. 4), т. е.

Здесь введена геометрическая характеристика , имеющая размерность м 3 и получившая название момента сопротивления при изгибе. Поскольку при заданном M х напряжения max ? тем меньше, чем больше W x , момент сопротивления является геометрической характеристикой прочности поперечного сечения изгибе. Приведем примеры вычисления моментов сопротивления для простейших форм поперечных сечений. Для прямоугольного поперечного сечения (рис. 5, а ) имеем J х =bh 3 /12,y max = h/2 и W x = J x /y max = bh 2 /6. Аналогично для круга (рис. 5,a J x =d 4 /64, y max =d/2 ) получаем W x =d 3 /32, для кругового кольцевого сечения (рис. 5, в), у которого

Похожие публикации