Интернет-журнал дачника. Сад и огород своими руками

Балка нагруженная продольной силой. Изгиб балки при действии продольных и поперечных сил. Проверка равновесия узла С

УДК 539.52

ПРЕДЕЛЬНАЯ НАГРУЗКА ДЛЯ ЗАЩЕМЛЕННОЙ БАЛКИ, НАГРУЖЕННОЙ ПРОДОЛЬНОЙ СИЛОЙ, НЕСИММЕТРИЧНО РАСПРЕДЕЛЕННОЙ НАГРУЗКОЙ И ОПОРНЫМИ МОМЕНТАМИ

И.А. Монахов1, Ю.К. Басов2

кафедра строительного производства Строительный факультет Московский государственный машиностроительный университет ул. Павла Корчагина, 22, Москва, Россия, 129626

2Кафедра строительных конструкций и сооружений Инженерный факультет Российский университет дружбы народов ул. Орджоникидзе, 3, Москва, Россия, 115419

В статье разработана методика решения задач о малых прогибах балок из идеального жестко-пластического материала при действии несимметрично распределенных нагрузок с учетом предварительного растяжения-сжатия. Разработанная методика применена для исследования напряженно-деформированного состояния однопролетных балок, а также для вычисления предельной нагрузки балок.

Ключевые слова: балка, нелинейность, аналитическое.

В современном строительстве, судостроении, машиностроении, химической промышленности и в других отраслях техники наиболее распространенными видами конструкций являются стержневые, в частности балки. Естественно, что для определения реального поведения стержневых систем (в частности, балок) и ресурсов их прочности необходим учет пластических деформаций.

Расчет конструктивных систем при учете пластических деформаций с помощью модели идеального жесткопластического тела является наиболее простым, с одной стороны, и достаточно приемлемым с точки зрения требований практики проектирования - с другой. Если иметь в виду область малых перемещений конструктивных систем, то это объясняется тем, что несущая способность («предельная нагрузка») идеальных жесткопластических и упругопластических систем оказывается одной и той же.

Дополнительные резервы и более строгая оценка несущей способности конструкций выявляются в результате учета геометрической нелинейности при деформировании их. В настоящее время учет геометрической нелинейности в расчетах конструктивных систем является первоочередной задачей не только с точки зрения развития теории расчета, но и с точки зрения практики проектирования сооружений. Приемлемость решений задач о расчете конструкций в условиях малости

перемещений достаточно неопределенна, с другой стороны, практические данные и свойства деформируемых систем позволяют считать, что большие перемещения являются реально достижимыми. Достаточно указать на конструкции строительных, химических, судо- и машиностроительных объектов. Кроме того, модель жесткопластического тела означает пренебрежение упругими деформациями, т.е. пластические деформации намного превосходят упругие. Поскольку деформациям соответствуют перемещения, то учет больших перемещений жесткопластических систем является уместным.

Однако геометрически нелинейное деформирование конструкций в большинстве случаев неизбежно приводит и к возникновению пластических деформаций. Поэтому особое значение приобретает одновременный учет пластических деформаций и геометрической нелинейности в расчетах конструктивных систем и, конечно, стержневых.

В данной статье рассматриваются малые прогибы. Подобные задачи решались в работах .

Рассматривается балка с защемленными опорами, под действием ступенчатой нагрузки, краевых моментов и предварительно приложенной продольной силы (рис. 1).

Рис. 1. Балка под распределенной нагрузкой

Уравнения равновесия балки при больших прогибах в безразмерной форме имеет вид

d2 т / , ч d2 w dn

-- + (п ± щ)-- + р = ^ - = 0, dx ах ах

х 2w р12 М N ,г,

где х ==, w =-, р =--, т =--, п =-, N и М - внутренние нормальная

I к 5хЪк Ъ!!Ък 25!!Ък

сила и изгибающий момент, р - поперечная равномерно распределенная нагрузка, W - прогиб, х - продольная координата (начало координат на левой опоре), 2к - высота поперечного сечения, Ъ - ширина поперечного сечения, 21 - пролет балки, 5^ - предел текучести материала. Если N задано, то усилие N является следствием действия р при

имеющихся прогибах, 11 = = , черта над буквами означает размерность величин.

Рассмотрим первый этап деформирования - «малые» прогибы. Пластическое сечение возникает при х = х2, в нем т = 1 - п2.

Выражения для скоростей прогибов имеют вид - прогиб при х = х2):

(2-х), (х > Х2),

Решение задачи разбивается на два случая: х2 < 11 и х2 > 11.

Рассмотрим случай х2 < 11.

Для зоны 0 < х2 < 11 из (1) получаем:

Рх 111 1 Р11 к1р/1 т = + к1 р + р/1 -к1 р/1 -±4- +-^41

х -(1 -п2)±а,

(, 1 , р/2 к1 р12Л

Рх2 + к1 р + р11 - к1 р11 -+ 1 ^

Х2 = к1 +11 - к111 - + ^

Учитывая возникновение пластического шарнира при х = х2, получаем:

тх=х = 1 - п2 =- р

(12 к12 Л к +/ - к1 - ^ + к"А

к, + /, - к,/, -L +

(/ 2 к/ 2 Л к1 + /1 - к1/1 - ^ + М

Рассматривая случай х2 > /1, получаем:

для зоны 0 < х < /1 выражение для изгибающих моментов имеет вид

к р-р2 + кар/1+р/1 -к1 р/1 ^ х-(1-П12)±

а для зоны 11 < х < 2 -

^ р-рЦ + 1^ Л

х -(1 -п-)±а +

(. рг- к1 р1-Л

Кх рх2 + кх р+

0, и тогда

I2 12 1 ч ч х2 = 1 -- + -.

Из условия пластичности вытекает равенство

откуда получаем выражение для нагрузки:

к1 - 12 + М Л2

К1/12 - к2 ¡1

Таблица 1

к1 = 0 11 = 0,66

Таблица 2

к1 = 0 11 = 1,33

0 6,48 9,72 12,96 16,2 19,44

0,5 3,24 6,48 9,72 12,96 16,2

Таблица 3

к1 = 0,5 11 = 1,61

0 2,98 4,47 5,96 7,45 8,94

0,5 1,49 2,98 4,47 5,96 7,45

Таблица 5 к1 = 0,8 11 = 0,94

0 2,24 3,56 4,49 5,61 6,73

0,5 1,12 2,24 3,36 4,49 5,61

0 2,53 3,80 5,06 6,33 7,59

0,5 1,27 2,53 3,80 5,06 6,33

Таблица 3

к1 = 0,5 11 = 2,0

0 3,56 5,33 7,11 8,89 10,7

0,5 1,78 3,56 5,33 7,11 8,89

Таблица 6 к1 = 1 11 = 1,33

0 2,0 3,0 4,0 5,0 6,0

0,5 1,0 2,0 3,0 4,0 5,0

Таблица 7 Таблица 8

к, = 0,8 /, = 1,65 k, = 0,2 /, = 0,42

0 2,55 3,83 5,15 6,38 7,66

0,5 1,28 2,55 3,83 5,15 6,38

0 7,31 10,9 14,6 18,3 21,9

0,5 3,65 7,31 10,9 14,6 18,3

Задавая коэффициент нагрузки к1 от 0 до 1, изгибающий момент а от -1 до 1, значение продольной силы п1 от 0 до 1, расстояние /1 от 0 до 2, получим положение пластического шарнира по формулам (3) и (5), а затем получим значение предельной нагрузки по формулам (4) или (6). Численные результаты расчетов сведены в таблицы 1-8.

ЛИТЕРАТУРА

Басов Ю.К., Монахов И.А. Аналитическое решение задачи о больших прогибах жестко-пластической защемленной балки под действием локальной распределенной нагрузки, опорных моментов и продольной силы // Вестник РУДН. Серия «Инженерные исследования». - 2012. - № 3. - С. 120-125.

Савченко Л.В., Монахов И.А. Большие прогибы физически нелинейных круглых пластинок // Вестник ИНЖЕКОНА. Серия «Технические науки». - Вып. 8(35). - СПб., 2009. - С. 132-134.

Галилеев С.М., Салихова Е.А. Исследование частот собственных колебаний элементов конструкции из стеклопластика, углепластика и графена // Вестник ИНЖЕКОНА. Серия «Технические науки». - Вып. 8. - СПб., 2011. - С.102.

Ерхов М.И., Монахов А.И. Большие прогибы предварительно напряженной жесткопласти-ческой балки с шарнирными опорами при равномерно распределенной нагрузке и краевых моментах // Вестник отделения строительных наук Российской академии архитектуры и строительных наук. - 1999. - Вып. 2. - С. 151-154. .

THE LITTLE DEFLECTIONS OF THE PREVIOUSLY INTENSE IDEAL PLASTIC BEAMS WITH THE REGIONAL MOMENTS

I.A. Monakhov1, U.K. Basov2

"Department of Building production manufacture Building Faculty Moscow State Machine-building University Pavla Korchagina str., 22, Moskow, Russia,129626

Department of Bulding Structures and Facilities Enqineering Faculty Peoples" Friendship University of Russia Ordzonikidze str., 3, Moskow, Russia, 115419

In the work up the technique of the decision of problems about the little deflections of beams from ideal hard-plastic material, with various kinds of fastening, for want of action of the asymmetrically distributed loads with allowance for of preliminary stretching-compression is developed. The developed technique is applied for research of the strained-deformed condition of beams, and also for calculation of a deflection of beams with allowance for of geometrical nonlinearity.

Key words: beam, analytic, nonlinearity.

Основные понятия. Поперечная сила и изгибающий момент

При изгибе поперечные сечения, оставаясь плоскими, поворачиваются относительно друг друга вокруг некоторых осей, лежащих в их плоскостях. На изгиб работают балки, оси, валы и другие детали машин и элементы конструкций. В практике встречаются поперечный (прямой), косой и чистый виды изгиба.

Поперечным (прямым) (рис. 61, а) называется изгиб, когда внешние силы, перпендикулярные продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей её поперечного сечения.

Косой изгиб (рис. 61, б) это изгиб, когда силы действуют в плоскости, проходящей через ось балки, но не проходящей ни через одну из главных центральных осей её поперечного сечения.

В поперечных сечениях балок при изгибе возникают два вида внутренних сил - изгибающий момент М и и поперечная сила Q. В частном случае, когда поперечная сила равна нулю, а возникает только изгибающий момент, то имеет место чистый изгиб (рис. 61, в). Чистый изгиб возникает при нагружении распределенной нагрузкой или при некоторых нагружениях сосредоточенными силами, например, балка, нагруженная двумя симметричными равными силами.

Рис. 61. Изгиб: а - поперечный (прямой) изгиб; б - косой изгиб; в - чистый изгиб

При изучении деформации изгиба мысленно представляется, что балка состоит из бесконечного количества волокон, параллельных продольной оси. При чистом изгибе справедлива гипотеза плоских сечений: волокна, лежащие на выпуклой стороне растягиваются , лежащие на вогнутой стороне - сжимаются , а на границе между ними лежит нейтральный слой волокон (продольная ось), которые только искривляются , не изменяя своей длины; продольные волокна балки не оказывают друг на друга давления и, следовательно, испытывают только растяжение и сжатие.

Внутренние силовые факторы в сечениях балок - поперечная сила Q и изгибающий момент М и (рис. 62) зависят от внешних сил и изменяются по длине балки. Законы изменения поперечных сил и изгибающих моментов представляются некоторыми уравнениями, в которых аргументами являются координаты z поперечных сечений балок, а функциями - Q и М и. Для определения внутренних силовых факторов применим метод сечений.

Рис. 62.

Поперечная сила Q есть равнодействующая внутренних касательных сил в поперечном сечении балки. Следует иметь в виду, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики.

Изгибающий момент М и есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки. Изгибающий момент также, как и поперечная сила имеет разное направление для левой и правой части балки. Это говорит о непригодности правила знаков статики при определении изгибающего момента.

Рассматривая равновесие частей балки, расположенных слева и справа от сечения, видно, что в поперечных сечениях должны действовать изгибающий момент М и и поперечная сила Q. Таким образом, в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту", но и касательные, соответствующие поперечной силе.

Для наглядного изображения распределения вдоль оси балки поперечных сил Q и изгибающих моментов М и удобно представлять их в виде эпюр, ординаты которых для любых значений абсциссы z дают соответствующие значения Q и М и. Эпюры строятся аналогично построению эпюр продольных сил (см. 4.4) и крутящих моментов (см. 4.6.1.).

Рис. 63. Направление поперечных сил: а - положительное; б - отрицательное

Так как для установления знаков поперечных сил и изгибающих моментов правила знаков статики неприемлемы, установим для них другие правила знаков, а именно:

  • - если внешние сипы (рис.
  • 63, а), лежащие по левую сторону от сечения, стремятся приподнять левую часть балки или, лежащие по правую сторону от сечения, опустить правую часть балки, то поперечная сила Q положительна;
  • - если внешние силы (рис.
  • 63, б), лежащие по левую сторону от сечения, стремятся опустить левую часть балки или, лежащие по правую сторону от сечения, приподнять правую часть балки, то поперечная сила (Зотрицательна;

Рис. 64. Направление изгибающих моментов: а - положительное; б - отрицательное

  • - если внешняя нагрузка (сила и момент) (рис. 64, а), расположенная слева от сечения, даёт момент, направленный по ходу часовой стрелки или, расположенная справа от сечения, направленный против хода часовой стрелки, то изгибающий момент М и считается положительным;
  • - если внешняя нагрузка (рис. 64, б), расположенная слева от сечения, даёт момент, направленный против хода часовой стрелки или, расположенная справа от сечения, направленный по ходу часовой стрелки, то изгибающий момент М и считается отрицательным.

Правило знаков для изгибающих моментов связано с характером деформации балки. Изгибающий момент считается положительным, если балка изгибается выпуклостью вниз (растянутые волокна расположены внизу). Изгибающий момент считается отрицательным, если балка изгибается выпуклостью вверх (растянутые волокна расположены вверху).

Пользуясь правилами знаков, следует мысленно представлять себе сечение балки жёстко защемлённым, а связи - отброшенными и заменёнными их реакциями. Для определения реакций пользуются правилами знаков статики.

Все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижная опора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление , или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной - в противном случае.

Пример 1. Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные - под осью.

3. Построение эпюр крутящих моментов Мкр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр : условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным - в противном случае.

Пример 2. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил .

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр Nz и Мкр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) - прямая, параллельная оси, а на участке под распределенной нагрузкой - наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой . В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

Порядок расчета .

1. Намечаем характерные сечения.

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)
Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.



После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.




Давайте рассмотрим пару примеров:
1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.
Для начала нам необходимо выбрать расчетную схему.


На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

P = m * g = 90 * 10 = 900 Н = 0.9 кН


М = P * l = 0.9 кН * 2 м = 1.8 кН*м


По таблице сортамента двутавров находим момент сопротивления двутавра №10.


Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа


После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа – верно, значит данный двутавр выдержит массу 90 кг.


2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.
Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).

Продольно-поперечным изгибом называется сочетание поперечного изгиба со сжатием или растяжением бруса.

При расчете на продольно-поперечный изгиб вычисление изгибающих моментов в поперечных сечениях бруса производится с учетом прогибов его оси.

Рассмотрим балку с шарнирно опертыми концами, нагруженною некоторой поперечной нагрузкой и сжимающей силой 5, действующей вдоль оси балки (рис. 8.13, а). Обозначим у прогиб оси балки в поперечном сечении с абсциссой (положительное направление оси у примем вниз, и, следовательно, прогибы балки считаем положительными, когда они направлены вниз). Изгибающий момент М, действующий в этом сечении,

(23.13)

здесь изгибающий момент от действия поперечной нагрузки; - дополнительный изгибающий момент от действия силы

Полный прогиб у можно рассматривать состоящим из прогиба возникающего от действия только поперечной нагрузки, и дополнительного прогиба, равного вызванного силой .

Полный прогиб у больше суммы прогибов, возникающих при раздельном действии поперечной нагрузки и силы S, так как в случае действия на балку только силы S прогибы ее равны нулю. Таким образом, в случае продольно-поперечного изгиба принцип независимости действия сил неприменим.

При действии на балку растягивающей силы S (рис. 8.13, б) изгибающий момент в сечении с абсциссой

(24.13)

Растягивающая сила S приводит к уменьшению прогибов балки, т. е. полные прогибы у в этом случае меньше прогибов вызванных действием только поперечной нагрузки.

В практике инженерных расчетов под продольно-поперечным изгибом подразумевают обычно случай действия сжимающей силы и поперечной нагрузки.

При жесткой балке, когда дополнительные изгибающие моменты невелики по сравнению с моментом прогибы у мало отличаются от прогибов . В этих случаях можно пренебрегать влиянием силы S на величины изгибающих моментов и величины прогибов балки и производить ее расчет на центральное сжатие (или растяжение) с поперечным изгибом, как изложено в § 2.9.

При балке, жесткость которой невелика, влияние силы S на величины изгибающих моментов и прогибов балки может быть весьма существенным и пренебрегать им при расчете нельзя. В этом случае балку следует рассчитывать на продольно-поперечный изгиб, понимая под этим расчет на совместное действие изгиба и сжатия (или растяжения), выполняемый с учетом влияния осевой нагрузки (силы S) на деформацию изгиба балки.

Рассмотрим методику такого расчета на примере балки, шарнирно опертой по концам, нагруженной поперечными силами, направленными в одну сторону, и сжимающей силой S (рис. 9.13).

Подставим в приближенное дифференциальное уравнение упругой линии (1.13) выражение изгибающего момента М по формуле (23.13):

[знак минус перед правой частью уравнения взят потому, что в отличие от формулы (1.13) здесь положительным для прогибов считается направление вниз], или

Следовательно,

В целях упрощения решения предположим, что дополнительный прогиб изменяется по длине балки по синусоиде, т. е. что

Это предположение позволяет получить достаточно точные результаты при действии на балку поперечной нагрузки, направленной в одну сторону (например, сверху вниз). Заменим в формуле (25.13) прогиб выражением

Выражение совпадает с формулой Эйлера для критической силы сжатого стержня с шарнирно закрепленными концами. Поэтому его обозначают и называют эйлеровой силой.

Следовательно,

Следует отличать эйлерову силу от критической силы вычисляемой по формуле Эйлера. Значение можно вычислять по формуле Эйлера лишь при условии, что гибкость стержня больше предельной; значение же подставляют в формулу (26.13) независимо от гибкости балки. В формулу для критической силы, как правило, входит минимальный момент инерции поперечного сечения стержня, а в выражение эйлеровой силы входит момент инерции относительно той из главных осей инерции сечения, которая перпендикулярна плоскости действия поперечной нагрузки.

Из формулы (26.13) следует, что соотношение между полными прогибами балки у и прогибами вызванными Действием только поперечной нагрузки, зависит от отношения (величины сжимающей силы 5 к величине эйлеровой силы).

Таким образом, отношение является критерием жесткости балки при продольно-поперечном изгибе; если это отношение близко к нулю, то жесткость балки велика, а если оно близко к единице, то жесткость балки мала, т. е. балка является гибкой.

В случае, когда , прогиб т. е. при отсутствии силы S прогибы вызываются только действием поперечной нагрузки.

Когда величина сжимающей силы S приближается к значению эйлеровой силы полные прогибы балки резко возрастают и могут во много раз превышать прогибы вызванные действием только поперечной нагрузки. В предельном случае при прогибы у, подсчитанные по формуле (26.13), становятся равными бесконечности.

Следует отметить, что формула (26.13) неприменима при весьма больших прогибах балки, так как она основана на приближенном выражении кривизны Это выражение применимо лишь при малых прогибах, а при больших должно быть заменено тоадым выражением кривизны (65.7). В этом случае прогибы у при не равнялись бы бесконечности, а были бы хотя и весьма большими, но конечными.

При действии на балку растягивающей силы формула (26.13) принимает вид.

Из этой, формулы следует, что полные прогибы у меньше прогибов вызванных действием только поперечной нагрузки. При растягивающей силе S, численно равной значению эйлеровой силы (т. е. при ), прогибы у вдвое меньше прогибов

Наибольшие и наименьшие нормальные напряжения в поперечном сечении балки с шарнирно закрепленными концами при продольно-поперечном изгибе и сжимающей силе S равны

Рассмотрим двухопорную балку двутаврового сечения с пролетом Балка нагружена посередине вертикальной силой Р и сжимается осевой силой S = 600 (рис. 10.13). Площадь поперечного сечения балки момент инерции , момент сопротивления и модуль упругости

Поперечные связи, соединяющие эту балку с соседними балками сооружения, исключают возможность потери устойчивости балки в горизонтальной плоскости (т. е. в плоскости наименьшей жесткости).

Изгибающий момент и прогиб посредине балки, подсчитанные без учета влияния силы S, равны:

Эйлерова сила определяется из выражения

Прогиб посередине балки, подсчитанный с учетом влияния силы S на основании формулы (26.13),

Определим наибольшие нормальные (сжимающие) напряжения в среднем поперечном сечении балки по формуле (28.13):

откуда после преобразования

Подставив в выражение (29.13) различные значения Р (в ), получим соответствующие им значения напряжений . Графически зависимость между определяемая выражением (29.13), характеризуется кривой, изображенной на рис. 11.13.

Определим допускаемую нагрузку Р, если для материала балки а необходимый коэффициент запаса прочности следовательно, допускаемое напряжение для материала

Из рис. 11.23 следует, что напряжение возникает в балке при нагрузке а напряжение - при нагрузке

Если в качестве допускаемой принять нагрузку то коэффициент запаса по напряжениям будет равен заданному значению Однако при этом балка будет обладать незначительным коэффициентом запаса по нагрузке, так как напряжения, равные от, возникнут в ней уже при Рот

Следовательно, коэффициент запаса по нагрузке в этом случае будет равен 1,06 (так как е. явно недостаточен.

Для того чтобы балка имела по нагрузке коэффициент запаса, равный 1,5, в качестве допускаемого следует принять значение при этом напряжения в балке будут, как это следует из рис. 11.13, примерно равны

Выше расчет на прочность производился по допускаемым напряжениям. Это обеспечивало необходимый запас прочности не только по напряжениям, но также и по нагрузкам, так как почти во всех случаях, рассмотренных в предыдущих главах, напряжения прямо пропорциональны величинам нагрузок.

При продольно-поперечном изгибе напряжения, как это следует из рис. 11.13, не прямо пропорциональны нагрузке, а изменяются быстрее, чем нагрузка (в случае сжимающей силы S). В связи с этим даже незначительное случайное увеличение нагрузки сверх расчетной может вызвать весьма большое увеличение напряжений и разрушение конструкции. Поэтому расчет сжато-изогнутых стержней на продольно-поперечный изгиб следует производить не по допускаемым напряжениям, а по допускаемой нагрузке.

Составим по аналогии с формулой (28.13) условие прочности при расчете на продольно-поперечный изгиб по допускаемой нагрузке.

Сжато-изогнутые стержни кроме расчета на продольно-поперечный изгиб необходимо рассчитывать также и на устойчивость.


Похожие публикации