Интернет-журнал дачника. Сад и огород своими руками

Нуклеиновые кислоты, АТФ и другие органические соединения клетки. Органические соединения клетки. Витамины и АТФ

>> АТФ и другие органические соединения клетки

АТФ и другие органические соединения клетки.

1. Какие органические вещества вы знаете?
2. Какие витамины вам извеетны? Какова их роль?
3. Какие виды энергии вам известны?
4. Почему для жизнедеятельности любого организма необходима энергия?

Аденозинтрифосфат (АТФ) - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты (рис. 12), содержится в цитоплазме, митохондриях, пластидах и ядрах.

АТФ - неустойчивая структура. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии.

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж,
АДФ + Н2О →АМФ + Н3РО4 + 40 кДж.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом -)так как при ее разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 13).

АТФ - универсальный источник энергии для всех реакций, протекающих в клетке.

Витамины (от лат. vita - жизнь) - сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов . В отличие от других органических веществ витамины не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины ), другие витамины поступают в организм с пищей.


Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (А, Д, Е и К) и водорастворимые (В, С, РР и др.) витамины.

Витамины играют большую роль в обмене веществ и других процессах жизнедеятельности организма. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме.

Кроме перечисленных выше органических соединений (углеводы, липиды , белки , нуклеиновые кислоты , витамины) в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.

Аденозинтрифосфат (АТФ). Аденозиндифосфат (АДФ). Аденозинмонофосфат (АМФ). Макроэргическая связь.

Витамины жирорастворимые и водорастворимые.


1. Какое строение имеет молекула АТФ?
2. Какую функцию выполняет АТФ?
3. Какие связи называются макроэргическими?
4. Какую роль выполняют в организме витамины?


Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

МБОУ СОШ №4 ст. Зольской

9 класс

учитель Камерджиева Э.А.

Тема урока: «АТФ и другие органические соединения клетки»

Цель урока: изучить строение АТФ.

1. Обучающие:

познакомить учащихся со строением и функциями молекулы АТФ;

познакомить с другими органическими соединениями клетки.

научить школьников расписывать гидролиз перехода АТФ в АДФ, АДФ в АМФ;

2. Развивающие:

сформировать у учащихся личностную мотивацию, познавательный интерес к данной теме;

расширить знания о энергии химических связей и витаминах

развить интеллектуальные и творческие способности учащихся, диалектическое мышление;

углубить знания о взаимосвязи строения атома и структурой ПСХЭ;

отработать навыки образования АМФ из АТФ и наоборот.

3. Воспитательная:

продолжить развивать познавательный интерес строения элементов молекулярного уровня любой клетки биологического объекта.

сформировать толерантное отношение к своему здоровью, зная какую роль играют витамины в организме человека.

Оборудование: таблица, учебник, мультимедийный проектор.

Тип урока: комбинированный

Структура урока :

Опрос д/з;

Изучение новой темы;

Закрепление новой темы;

Домашнее задание;

План урока:

Строение молекулы АТФ, функция;

Витамины: классификация, роль в организме человека.

Ход урока.

I. Организационный момент.

II. Проверка знаний

Строение ДНК и РНК (устно)- фронтальный опрос.

Построение второй цепочки ДНК и и-РНК (3-4 чел.)

Биологический диктант (6-7) 1 вар. нечетные номера, 2 вар.-четные

1) Какой из нуклеотидов не входит в состав ДНК?

2) Если нуклеотидный состав ДНК –АТТ-ГЦГ-ТАТ-, то каким должен быть нукеотидный состав и-РНК?

3) Укажите состав нуклеотида ДНК?

4) Какую функцию выполняет и-РНК?

5) Что является мономерами ДНК и РНК?

6) Назовите основные отличия и-РНК от ДНК.

7) Прочная ковалентная связь в молекуле ДНК возникает между: …

8) Какой из видов молекул РНК имеет самые длинные цепочки?

9) Какой вид РНК вступает в реакцию с аминокислотами?

10) Какие нуклеотиды входят в состав РНК?

2) УАА-ЦГЦ-АУА

3) Остаток фосфорной кислоты, дезоксирибоза, аденин

4) Снятие и перенос информации с ДНК

5) Нуклеотиды,

6) Одноцепочная, содержит рибозу, передает информацию

7) Остаток фосфорной кислоты и сахарами соседних нуклеотидов

10) Аденин, урацил, гуанин, цитозин.

(ноль ошибок – «5», 1 ош – «4», 2 ош. – «3»)

III. Изучение нового материала

Какие виды энергии вам известны? (Кинетическая, потенциальная.)

Эти виды энергии вы изучали на уроках физики. В биологии тоже есть свой вид энергии - энергия химических связей. Предположим, вы выпили чай с сахаром. Пища поступила в желудок, там разжижается и направляется в тонкий кишечник, где идет её расщепление: крупные молекулы до мелких. Т.е. сахар-это углевод дисахарид, который расщепляется до глюкозы. Она расщепляется и служит источником энергии, т.е.50%энергии рассеивается в виде теплоты для поддержания постоянной t тела, и 50% энергии, которая превращается в энергию АТФ, она хранится для нужд клетки.

Итак, цель урока - изучить строение молекулы АТФ.

Строение АТФ и ее роль в клетке (Объяснение учителя с использованием таблиц и рисунков учебника.)

АТФ был открыт в1929 г. Карлом Ломанном, а в1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке. АТФ содержится в цитоплазме, митохондриях, ядре.

АТФ - аденозинтрифосфат - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и 3-х остатков Н3РО4, соединенных поочередно.

Это неустойчивая структура. Если отделить 1 остаток НЗР04, то АТФ перейдет в АДФ:

АТФ+Н2О =АДФ+Н3РО4+Е, Е=40кДж

АДФ- аденозиндифосфат

АДФ + Н2О = АМФ+Н3РО4+Е, Е=40кДж

Остатки фосфорных кислот соединены значком, это макроэргическая связь:

При её разрыве выделяется 40кДж энергии. Ребята, записываем превращение АДФ из АТФ:

Итак, что вы можете сказать о строении АТФ и ее функциях?

Витамины и другие органические соединения клетки.

Кроме изученных органических соединений (белки, жиры, углеводы) есть органические соединения- витамины. Вы едите овощи, фрукты, мясо? (Да, конечно!)

Все эти продукты содержат большое количество витаминов. Для нормального функционирования нашего организма витаминов, поступающих с пищей, нужно небольшое количество. Но не всегда тот объём продуктов, который мы употребляем, способен восполнить наш организм витаминами. Одни витамины организм может синтезировать сам, другие же поступают только с пищей (н., витамин К, С).

Витамины – группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Все витамины принято обозначать буквами латинского алфавита-А, В, D, F...

По растворимости в воде и в жирах витамины делят на:

ВИТАМИНЫ

Жирорастворимые Водорастворимые

Е, A, D К С, РР, В

Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразныхферментов .

Витаминам отводится важнейшая роль вобмене веществ . Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организм наступают характерные и опасные патологические изменения.

Большинство витаминов не синтезируются в организме человека, поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок.

С нарушением поступления витаминов в организм связаны два принципиальных патологических состояния:

Гиповитаминоз – недостаток витамина.

Гипервитаминоз – избыток витамина.

Авитаминоз – полное отсутствие витамина.

IV. Закрепление материала

Обсуждение вопросов в ходе фронтальной беседы:

Как устроена молекула АТФ?

Какое значение играет АТФ в организме?

Как образуется АТФ?

Почему связи между остатками фосфорной кислоты называются макроэргическими?

Что нового вы узнали о витаминах?

Зачем нужны витамины в организме?

V. Задание на дом

Изучить § 1.7 «АТФ и другие органические соединения клетки», ответить на вопросы в конце параграфа, конспект выучить

Полное название образовательного учреждения: Департамент среднего профессионального образования Томской области ОГБПОУ «Колпашевский социально-промышленный колледж»

Курс: Биология

Раздел: Общая биология

Возрастная группа: 10 класс

Тема: Биополимеры. Нуклеиновые кислоты, АТФ и другие органические соединения.

Цель занятия: продолжить изучение биополимеров, способствовать формированию приемов логической деятельности, познавательных способностей.

Задачи урока:

Образовательные: познакомить студентов с понятиями нуклеиновые кислоты, способствовать осмыслению и усвоению материала.

Развивающие: развивать когнитивные качества студентов (умение видеть проблему, умение задавать вопросы).

Воспитательные: формировать положительную мотивацию к изучению биологии, стремление получить конечный результат, умение принимать решения и делать выводы.

Время реализации: 90 мин.

Оборудование:

  • ПК и видеопроектор;
  • авторская презентация, созданная в среде Power Point;
  • раздаточный дидактический материал (список кодирования аминокислот);

План:

1. Типы нуклеиновых кислот.

2. Строение ДНК.

3. Основные виды РНК.

4. Транскрипция.

5. АТФ и другие органические соединения клетки.

Ход занятия:

I. Организационный момент.
Проверка готовности к занятию.

II. Повторение.

Устный опрос:

1. Охарактеризуйте функции жиров в клетке.

2. В чем отличие биополимеров белков от биополимеров углеводов? В чем их сходство?

Тестирование (3 варианта)

III. Изучение нового материала.

1. Типы нуклеиновых кислот. Название нуклеиновые кислоты происходит от латинского слова «нуклеос», т.е. ядро: они впервые были обнаружены в клеточных ядрах. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения и играют центральную роль в хранении и передаче наследственной информации. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Каждый из нуклеотидов, входящих в состав РНК, содержит триуглеродный сахар - рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, - аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

2. Строение ДНК . Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу; одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых основания.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц.

Схематически сказанное можно выразить следующим образом:

А (аденин) - Т (тимин)

Т (тимин) - А (аденин)

Г (гуанин) - Ц (цитозин)

Ц (цитозин) - Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

3. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие и другой вид РНК - транспортная (т-РНК), которая подносит аминокислоты к месту образования белковых молекул - рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (р-РНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина - урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация обо всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

4. Транскрипция.

Процесс образования и-РНК называется транскрипцией (от лат. «транскрипцио» - переписывание). Транскрипция происходит в ядре клетки. ДНК → и-РНК с участием фермента полимеразы. т-РНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот, т-РНК получает команду от и-РНК - антикодон узнает кодон и несет аминокислоту.

5. АТФ и другие органические соединения клетки

В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров. К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды - мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что, в конечном счете, приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями.

АТФ - универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.

Средняя продолжительность жизни 1 молекулы АТФ в организме человека менее минуты, поэтому она расщепляется и восстанавливается 2400 раз в сутки.

В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ = АДФ + Ф + Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

АТФ + H2O → АДФ + H3PO4 + энергия(40 кДж/моль)

АТФ + H2O → АМФ + H4P2O7 + энергия(40 кДж/моль)

АДФ + H3PO4 + энергия(60 кДж/моль) → АТФ + H2O

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

IV. Итог занятия.

1. О б о б щ е н и е изученного материала.

Вопросы к студентам:

1. Какие компоненты входят в состав нуклеотидов?

2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?

3. Дайте сравнительную характеристику ДНК и РНК.

4. Решите задачи:

Г-Г-Г-А-Т-А-А-Ц-А-Г-А-Т достройте вторую цепь.

Ответ: ДНК Г-Г-Г- А-Т-А-А-Ц-А-Г-А-Т

Ц-Ц-Ц-Т-А-Т-Т-Г-Т-Ц-Т-А

(по принципу комплементарности)

2) Укажите последовательность нуклеотидов в молекуле и-РНК, построенной на этом участке цепи ДНК.

Ответ: и-РНК Г-Г-Г-А-У-А-А-Ц-А-Г-Ц-У

3) Фрагмент одной цепи ДНК имеет следующий состав:

  • -А-А-А-Т-Т-Ц-Ц-Г-Г-. достройте вторую цепь.
  • -Ц-Т-А-Т-А-Г-Ц-Т-Г-.

5. Решите тест:

4) Какой из нуклеотидов не входит в состав ДНК?

а) тимин;

б) урацил;

в) гуанин;

г) цитозин;

д) аденин.

Ответ: б

5) Если нуклеотидный состав ДНК

АТТ-ГЦГ-ТАТ- то каким должен быть нуклеотидный состав и-РНК?

А) ТАА-ЦГЦ-УТА;

Б) ТАА-ГЦГ-УТУ;

В) УАА-ЦГЦ-АУА;

Г) УАА-ЦГЦ-АТА.

Ответ: в

1. Какие органические вещества вы знаете?

Органические вещества: белки, нуклеиновые кислоты, углеводы, жиры (липиды), витамины.

2. Какие витамины вам известны? Какова их роль?

Выделяют водорастворимые (C, B1, B2, B6, PP, B12 и B5), жирорастворимые (А, В, Е и К) витамины.

3. Какие виды энергии вам известны?

Магнитная, тепловая, световая, химическая, электрическая, механическая, ядерная и др.

4. Почему для жизнедеятельности любого организма необходима энергия?

Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоупорядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела и для других целей.

Вопросы

1. Какое строение имеет молекула АТФ?

Аденозинтрифосфат (АТФ) - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трёх остатков фосфорной кислоты.

2. Какую функцию выполняет АТФ?

АТФ - универсальный источник энергии для всех реакций, протекающих в клетке.

3. Какие связи называются макроэргическими?

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при её разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей.

4. Какую роль выполняют в организме витамины?

Витамины - сложные оль органические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. В отличие от других органических веществ, витамины не используются в качестве источника энергии или строительного материала.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды.

Задания

Обобщив имеющиеся у вас знания, подготовьте сообщение о роли витаминов в нормальном функционировании организма человека. Обсудите с одноклассниками вопрос: каким образом человек может обеспечить свой организм необходимым количеством витаминов?

Своевременное и сбалансированное получение необходимого количества витаминов способствует нормальной жизнедеятельности человека. Основное их количество поступает в организм с пищей, поэтому важно правильно питаться (чтобы пища содержала витамины в нужном количестве, она должна быть разнообразной и сбалансированной).

Роль витаминов в организме человека

Витамины – жизненно важные вещества, необходимые нашему организму для поддержания многих его функций. Поэтому достаточное и постоянное поступление витаминов в организм с пищей крайне важно.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды. Это имеет существенное значение в профилактике инфекционных заболеваний.

Витамины смягчают или устраняют неблагоприятное действие на организм человека многих лекарственных препаратов. Недостаток витаминов сказывается на состоянии отдельных органов и тканей, а также на важнейших функциях: рост, продолжение рода, интеллектуальные и физические возможности, защитные функции организма. Длительный недостаток витаминов ведет сначала к снижению трудоспособности, затем к ухудшению здоровья, а в самых крайних, тяжелых случаях это может закончиться смертью.

Только в некоторых случаях наш организм может синтезировать в небольших количествах отдельные витамины. Так, например, аминокислота триптофан может преобразовываться в организме в никотиновую кислоту. Витамины необходимы для синтеза гормонов – особых биологически активных веществ, которые регулируют самые разные функции организма.

Получается, что витамины – это вещества, относящиеся к незаменимым факторам питания человека, и имеют огромное значение для жизнедеятельности организма. Они необходимы для гормональной системы и ферментной системы нашего организма. Также регулируют наш обмен веществ, делая организм человека здоровым, бодрым и красивым.

Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако в этом случае их бывает не всегда достаточно. Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей.

Применение витаминов с лечебной целью (витаминотерапия) первоначально было целиком связано с воздействием на различные формы их недостаточности. С середины XX века витамины стали широко использовать для витаминизации пищи, а так же кормов в животноводстве.

Ряд витаминов представлен не одним, а несколькими родственными соединениями. Знание химического строения витаминов позволило получать их путем химического синтеза; наряду с микробиологическим синтезом это основной способ производства витаминов в промышленных масштабах.

Первоисточником витаминов являются растения, в которых витамины накапливаются. В организм витамины поступают в основном с пищей. Некоторые из них синтезируются в кишечнике под влиянием жизнедеятельности микроорганизмов, но образующиеся количества витаминов не всегда полностью удовлетворяют потребности организма.

Вывод: Витамины влияют на усвоение питательных веществ, способствуют нормальному росту клеток и развитию всего организма. Являясь составной частью ферментов, витамины определяют их нормальную функцию и активность. Недостаток, а тем более отсутствие в организме какого-либо витамина ведет к нарушению обмена веществ. При недостатке их в пище снижается работоспособность человека, сопротивляемость организма к заболеваниям, к действию неблагоприятных факторов окружающей среды. В результате дефицита или отсутствия витаминов, развивается витаминная недостаточность.

Конспект урока

Педагогика и дидактика

АТФ и другие органические соединения клетки. Аденозинтрифосфат АТФ. АТФ нуклеотид состоящий из азотистого основания аденина углевода рибозы и трех остатков фосфорной кислоты рис. АТФ неустойчивая структура.

Урок 8. АТФ и другие органические соединения клетки. 1.7

1. Аденозинтрифосфат (АТФ).

АТФ – нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты (рис. 12), содержится в цитоплазме, митохондриях, пластидах и ядрах.

АТФ — неустойчивая структура. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии. Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~), так как при ее разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 13). АТФ — универсальный источник энергии для всех реакций, протекающих в клетке.

2. Витамины.

Витамины (от лат. vita — жизнь) —биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов. В отличие от других органических веществ витамины не используются в качестве источника энергии или строительного материала, соединяясь с белками в качестве коферментов , они приводят к образованию ферментов.

Некоторые витамины могут синтезироваться самим организмом (например, бактерии способны образовывать практически все витамины). Другие витамины поступают в организм с пищей. Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (A , D , Е и К) и водорастворимые (В, С, РР и др.) витамины.

Витамины играют большую роль в обмене веществ и других процессах жизнедеятельности организма. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме.

Кроме перечисленных выше органических соединений (углеводы, липиды, белки, нуклеиновые кислоты, витамины) в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.

Карточка у доски:

  1. Какое азотистое основание входит в состав АТФ?
  2. Какой углевод входит в состав АТФ?
  3. Сколько макроэргических связей в молекуле АТФ?
  4. Какое количество энергии выделяется при разрушении всех макроэргических связей в молекуле АТФ?
  5. Какие функции выполняет АТФ в клетке?
  6. Каково значение витаминов для организма?
  7. Каково значение ферментов для организма?
  8. Перечислите жирорастворимые витамины.
  9. В каких изученных молекулах встречается углевод рибоза?
  10. В каких изученных молекулах встречаются остатки фосфорной кислоты?

Карточки для письменной работы:

  1. Определение или сущность термина: 1. АТФ. 2. АДФ. 3. АМФ. 4. Макроэргические связи. 5. Витамины. 6. Коферменты.
  2. Строение АТФ, АДФ, АМФ.
  3. Значение АТФ.
  4. Характеристика витаминов.

Компьютерное тестирование

**Тест 1 . В состав молекулы АТФ входят:

  1. Азотистое основание.
  2. Аминокислота.
  3. Три остатка фосфорной кислоты.
  4. Углевод.

**Тест 2 . Углевод и азотистое основание АТФ:

  1. Углевод рибоза.
    1. Углевод дезоксирибоза.
    2. Азотистое основание урацил.
    3. Азотистое основание аденин.

Тест 3 . В молекуле АТФ макроэргических связей:

  1. Одна.
  2. Две.
  3. Три.
  4. Четыре.
  5. Цитозин.

Тест 4. При распаде АТФ до АМФ и 2 молекул Н 3 РО 4 выделилось энергии:

  1. 40 кДж.
  2. 80 кДж.
  3. 120 кДж.
  4. 30,6 кДж.

Тест 5 . Значение витаминов:

  1. Соединяясь с белками образуют ферменты.
  2. Соединяясь с жирами образуют ферменты.
  3. Соединяясь с углеводами образуют ферменты.
  4. Соединяясь с РНК образуют ферменты.

Тест 6 . Жирорастворимые витамины?

  1. А, С, D , K .
  2. A , B , D , K .
  3. A , D , E , K .
  4. A , C , B , K .

**Тест 7 . К малым органическим молекулам относятся:

  1. Белки.
  2. Жиры.
  3. Витамины.
  4. АТФ.

**Тест 8 . Азотистое основание аденин входит в состав:

  1. ДНК.
  2. РНК.
  3. АТФ.
  4. Белков.

Тест 9 . Моносахарид рибоза входит в состав:

  1. ДНК.
  2. РНК.
  3. АТФ.
  4. Мальтозы.

**Тест 10 . Остатки фосфорной кислоты входят в состав:

  1. ДНК.
  2. РНК.
  3. АТФ.
  4. Лактозы.

А также другие работы, которые могут Вас заинтересовать

36842. ИЗУЧЕНИЕ И ПОВЕРКА МАНОМЕТРОВ 298 KB
Давлением называется физическая величина характеризующая интенсивность нормальных распределенных сил с которыми одно тело действует на поверхность другого. Если силы распределены вдоль поверхности равномерно то давление на любую часть поверхности определяется следующим образом: P=G F 1 где F площадь поверхности G сумма приложенных сил. Давление в один ньютон на квадратный метр в системе СИ получила название Паскаль [Па]. = 1013 бар = 0101 МПа Классификация манометров По принципу действия манометры делятся на: Жидкостные...
36843. ПОСТРОЕНИЕ ДИАГРАММ В MS EXCEL 318.5 KB
Освоить технологии построения диаграммы различных типов. Научиться работать с компонентами диаграммы и настраивать параметры диаграммы. Задания для выполнения и методические рекомендации: С помощью Microsoft Excel можно создавать сложные диаграммы для данных рабочего листа. Прежде чем начать построение диаграммы рассмотрим два важных определения.
36844. Основные определения и критерии классификации угроз 223.2 KB
Потенциальные злоумышленники называются источниками угрозы. Нарушение безопасности это реализация угрозы. Естественные угрозы это угрозы вызванные воздействием на АС объективных физических процессов стихийных природных явлений не зависящих от человека. Искусственные делят на: непреднамеренные совершенные по незнанию и без злого умысла из любопытности или халатности преднамеренные Каналы проникновения в систему и их классификация: По способу: прямые косвенные По типу основного средства для реализации угрозы: человек...
36845. Подготовка грунтовой площадки к строительству 570.5 KB
Свойства и технологические характеристики грунтов Любое здание или инженерное сооружение возводится на подстилающем слое грунта. От физикомеханических свойств подстилающего слоя грунта зависит величина осадочных деформаций и долговечность сооружения в целом. К скальным однородным грунтам относят массивы изверженных пород с кристаллической структурой которые характеризуются значительной плотностью и малой влагоемкостью. К скальным слоистым грунтам относят породы сложенные из песчаников доломитов и глинистых сланцев.
36846. КОМПЬЮТЕРНАЯ СИСТЕМА PROJECT EXPERT. АНАЛИЗ ФИНАНСОВЫХ РЕЗУЛЬТАТОВ ПРОЕКТА 64 KB
Нижняя граница обусловлена тем что оборотных средств должно быть достаточно для погашения краткосрочных обязательств иначе компания окажется под угрозой банкротства. Превышение оборотных средств над краткосрочными обязательствами более чем в три раза также является нежелательным поскольку свидетельствует о нерациональной структуре активов. Показывает отношение наиболее ликвидной части оборотных средств денежных средств дебиторской задолженности краткосрочных финансовых вложений к краткосрочным обязательствам. Чистый оборотный капитал...
36847. Массивы и матрицы. Решение задач линейной алгебры 121.5 KB
9000 Ввод элементов матрицы также осуществляется в квадратных скобках при этом элементы строки отделяются друг от друга пробелом или запятой а строки разделяются между собой точкой с запятой: nme= Обратиться к элементу матрицы можно указав после имени матрицы в круглых скобках через запятую номер строки и номер столбца на пересечении которых элемент расположен: nmeиндекс1 индекс2 Листинг 3. Пример обращения к элементам матрицы = = 1 2 3 4 5 6 7 8 9 12^22 33 ns = 3.
36848. Система автоматического регулирования температуры 488 KB
Лабораторная работа Система автоматического регулирования температуры. Система автоматического регулирования температуры. Цель работы: Ознакомление с принципами построения системы автоматического регулирования и принципами работы такой системы. Экспериментальное получение переходных процессов системы автоматического регулирования.
36849. Логическая организация оперативной памяти 236.2 KB
Определить объем основной памяти 2.Определить объем дополнительной памяти 3.Определить объем отображаемой памяти 4.
36850. КОНСОЛИДАЦИЯ ДАННЫХ В MS EXCEL 421 KB
Создайте три однотипные таблицы по образцу на одном листе или на разных листах MS Excel рис. Проведите консолидацию 3х таблиц аттестации в одну с вычислением среднего балла по каждому предмету и разместите консолидированную таблицу на листе Консолидация для чего: перейдите на чистый лист в книге и установите маркер мыши в левый верхний угол будущей таблицы; на панели Данные выберите Консолидация; в окне Консолидация рис. 2 Диалоговое окно Консолидация перейдите в строку Ссылка затем выделите на листе Данные для консолидации...

Похожие публикации