Интернет-журнал дачника. Сад и огород своими руками

Изменение давления при постоянном объеме. Закон Бойля-Мариотта: при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа. Хранение и транспортировка газов

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными.

Возьмем закрытый сосуд с газом и будем нагревать его (рис. 4.2). Температуру газа будем определять с помощью термометра, а давление - манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 °С обозначим а затем будем постепенно нагревать наружный сосуд и записывать значения для газа. Оказывается, что график зависимости от построенный на основании такого опыта, имеет вид прямой линии (рис. 4.3, а). Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа.

Из подобия треугольников на рис. 4.3, а можно записать:

Если обозначить постоянную через у, то получим

По смыслу коэффициент пропорциональности у в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объеме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 °С, изменяется его давление при нагревании на

Выведем единицу температурного коэффициента у в СИ:

Повторяя описанный опыт для различных газов при различных массах, можно установить, что в пределах ошибок опытов точка А для всех графиков получается в одном и том же месте (рис. 4.3, б). При этом длина отрезка ОА получается равной Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна а температурный коэффициент давления Отметим, что точное значение у равно При решении задач обычно пользуются приближенным значением у, равным

Из опытов значение у впервые было определено французским физиком Ж. Шарлем, который в 1787 г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах у зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ.

По закону Бойля V1: V2 = Р2: P1 при постоянной температуре

По закону Гей-Люсака V1: V2 = T1: T2 при постоянном давлении
P1: Р2 = T1: T2 при постоянном объёме
Из формул, представленных выше, можно заметить, что две из трех величин, могут рассматриваться как переменные, если третья постоянна. Нет такого состояния, при котором давление, объем и температура могли бы все рассматриваться как переменные.
Однако бывают случаи, когда все величины переменные, а один фактор неизвестен. В практических случаях такие задачи могут быть решены по аналогии с примерами ниже:
Газ при температуре 20 o C занимает объем 0,98 м 3 в цилиндре диаметром 50 мм, к поршню приложена сила 980Н. Каким будет смещение поршня, если сила, приложенная к поршню, удвоилась, а температура увеличилась до 50 o C?
Смещение поршня легко определить при задании изменений объема. Однако, в задаче задано только одно значение объема (0,98 м 3), а другое неизвестно.
Чтобы установить зависимости между всеми параметрами, которые являются переменными, изменения объема должны быть рассмотрены отдельно при двух фазах.

Случай А 1-ая фаза

Газ нагревается от температуры t = 20 o C, которая соответствует абсолютной температуре T1 = 20 + 273 = 293 o K, до температуры 50 o C, которая соответствует T2 = (50 + 273) =323 o K. Если давление на поршень остается постоянным с нагрузкой 980Н, то произойдет увеличение объема газа. По закону Гей-Люсака V1: V2 = T1: T2
Vх = (0,98 323)/293 =1,08 дм 3 (промежуточное значение)

2-ая фаза
Газ, достигнув объема Vх = 1,08 дм 3 в результате увеличения температуры до T2 (323 o K), теперь получает дополнительное воздействие - увеличилась сила, приложенная к поршню. В результате, оно возрастает до P2 = 980 2 = 1960 Н, а объем уменьшается, поскольку воздух сжимается поршнем. По закону Бойля Vх: V2 = P2: Р1 (Vх P1 = V2 P2)
Подставляя заданные значения:
V2 = (1,08 980)/1960 = 0,54 дм 3 (окончательное значение)

Отметим, что параметры P1 и Р2 были представлены как символы приложенной силы, а не единицы давления. Это - не ошибка, поскольку сила относится непосредственно к давлению в этом примере, так как диаметр поршня не изменяется.

Это подтверждается следующими вычислениями.
I. Площадь поверхности поршня в см 2 (3,14 D2)/4
Диаметр = 50 мм = 5 см S = (3,14 52)/4 = 19,6 см 2
Давление на каждой стадии теперь можно рассчитать.
II. Начальное давление P1=Начальная сила/Площадь поверхности = 980Н/19,6см 2 = 50Н/см 2 =5кг/см 2
Финальное давление P2= Финальная сила/Площадь поверхности = (980 2)/19,6 =100Н/см=10кг/см 2
При равенстве площадей поверхности поршня увеличение вдвое приложенной силы удвоит давление.
Подставляя заданные значения:
Vх P1 = V2 P2
V2 = (1,08 дм 3 50 Н/см 2)/100Н/см 2 = (1,08 дм 3 5 кг/см 2)/10кг/см 2 = 0,54 дм 3

Этот же самый результат получен в предыдущем вычислении.
Можно получить результат, непосредственно используя следующее выражение, которое является комбинацией из двух начальных формул:
(P 1 V1)/Т1 = (P2 V2)/Т2
В примере объем V2 требуется для того, чтобы вычислить перемещение поршня
V2 = (Р1 V1 T2)/(T1 P2) = (5 0,98 323)/(293 10) = 0,54 дм 2
Используя оба объема, можно вычислить изменение в положении поршня, применяя геометрию:
Объем = площадь поверхности высота Высота в см = объем в см 2 / площадь в см 2
Начальная высота = 980см 3 /19,6см 2 =50см. Финальная высота = 540см 3 /19,6см 2 =27,5см
Перемещение поршня = 50-27,5=22,5 см В этой задаче принималось, что нагревание газа произошло в результате увеличения температуры внешней среды.

Если вспомнить эксперимент с велосипедным насосом, когда воздух сжат и у него нет возможности расширяться, выделяется тепло, то есть температура воздуха возрастает и это тепло передается к внешним поверхностям насоса. Обратный процесс возникает, когда газ расширяется.
Если у газа есть возможность расшириться, его температура уменьшится.
Изменения температуры воздуха порождают:
I. Возникновение тепла на стадии сжатия.
II. Поглощение тепла на стадии расширения.

Изменения температуры могут быть рассчитаны, как показано, при использовании величин из предыдущего примера.
Количество газа при температуре 293°K занимает объем V1 =0,98 дм 3 при давлении 5 бар. Если давление повысить до 10 бар, объем уменьшится до V2=0,54 дм 3 .
Какой станет температура газа? Важно помнить, что закон Бойля работает только тогда, когда температура постоянна. Поэтому, при 293°K повышение давления от P1 до P2 приводит к уменьшению объема газа с V1 до Vх: V1: Vх = P2: P1 то есть. V1 P1 = Vх P2
Подставляя известные значения: Vх = (0,98 5)/10=0,49 дм 3
Используя закона Гей-Люсака и рассматривая давление как постоянную величину P2 (к которому уже отнесен объем Vх), можно записать:
Vх: V2 = Т1: Т2 то есть Vх T2 = V2 T1
Подставляя известные значения: T2 = (0,54 293)/0,49 = 323°K Это значение равно значению, которое дано в начальном примере.

Темы кодификатора ЕГЭ : изопроцессы - изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

То есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

То есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором - . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

(1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

(2)

Данное утверждение называется законом Бойля - Мариотта .

Записав закон Бойля - Мариотта в виде

(3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:


-диаграмма: ось абсцисс , ось ординат ;
-диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой .

Изотерма на -диаграмме - это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру - график функции ). Изотерма-гипербола изображена на рис. 1 .

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на -диаграмме .

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2 ). Первый процесс идёт при температуре , второй - при температуре .

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй - class="tex" alt="p_2 > p_1"> . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, class="tex" alt="T_2 > T_1"> .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3 ):

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс - это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где - атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части - только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

(4)

А отсюда теперь - ввиду произвольности выбора состояний! - получаем закон Гей-Люссака :

(5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре :

(6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой . На -диаграмме изобара является прямой линией (рис. 4 ):

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на -диаграмме .
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5 ):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля - Мариотта!).

Стало быть, class="tex" alt="p_2 > p_1"> .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6 ):

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, - это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

(7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля :

(8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре :

(9)

Увеличение давления газа фиксированного объёма при его нагревании - вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Графики изохорного процесса

График изохорного процесса называется изохорой . На -диаграмме изохора является прямой линией (рис. 7 ):

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля - Мариотта). Стало быть, class="tex" alt="V_2 > V_1"> .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9 ):

Рис. 9. Изохоры на и -диаграммах

Законы Бойля - Мариотта, Гей-Люссака и Шарля называются также газовыми законами .

Мы вывели газовые законы из уравнения Менделеева - Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Французский физик Шарль открыл закон (в 1787 г.), который выражает зависимость изменения давления газа от температуры при постоянном объеме.

Опыт показывает, что при нагревании газа при постоянном объеме давление газа увеличивается. Скалярная величина, измеряемая изменением единицы давления газа, взятого при 0 0 С, от изменения его температуры на 1 0 С, называется термическим коэффициентом давления γ.

Согласно определению, термический коэффициент давления?

где р 0 - давление газа при 0°С, р - давление газа после нагревания на . Проделаем такой опыт (рис. 13, а). Сосуд А поместим в воду со льдом при открытых кранах 1 и 2. Когда сосуд:: и содержащийся в нем воздух охладятся до 0°С , закроем кран 2. Начальное состояние воздуха в сосуде: t° = 0°C, р 0 = 1 ат. Не меняя объема воздуха, поместим сосуд в горячую воду. Воздух в сосуде нагревается, его давление увеличивается и при температуре t° 1 = 40°C оно становится p 1 = 1,15 ат. Термический коэффициент давления

Более точными опытами, определив термический коэффициент давления для различных газов, Шарль открыл, что при постоянном объеме все газы имеют один и тот же термический коэффициент давления

Из формулы термического коэффициента давления


Заменим t° = T-273° . Тогда

Заменив получим


следовательно, р = р 0 γТ.

Если давление газа при температуре T 1 обозначить р 1 , а при температуре Т 2 - р 2 , то р 1 = γр 0 Т 1 и р 2 = γр 0 Т 2 . Сравнив давления, получим формулу закона Шарля:


Для данной массы газа при постоянном объеме давление газа изменяется прямо пропорционально изменению абсолютной температуры газа. Это и есть формулировка закона Шарля. Процесс изменения состояния газа при постоянном объеме называется изохорическим. Формула закона Шарля является уравнением?изохорического состояния газа. Чем выше температура газа, тем больше средняя кинетическая энергия молекул, а следовательно, больше и их скорость. В связи с этим увеличивается число ударов молекул о стенки сосуда, т. е. давление. На рис. 13, б изображен график закона Шарля.

Похожие публикации