Интернет-журнал дачника. Сад и огород своими руками

Клеточное дыхание при диссимиляции происходит. Какие типы биохимических реакций протекают в ассимиляции и диссимиляции

В клетке постоянно происходит обмен веществ и энергии с окружающей средой. Обмен веществ (метаболизм ) - основное свойство живых организмов. На клеточном уровне метаболизм включает два процесса: ассимиляцию (пластический обмен) и диссимиляцию (энергетический обмен). Эти процессы происходят в клетке одновременно.

Диссимиляция (энергетический обмен) - совокупность реакций расщепления веществ. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. По типу диссимиляции организмы делят на аэробные и анаэробные .

Аэробная диссимиляция

Энергетический обмен проходит в 3 этапа:

1-й этап - подготовительный.

На этом этапе молекулы сложных веществ (белков, жиров, углеводов, нуклеиновых кислот) распадаются до мономеров. Выделяется небольшое количество энергии, которая рассеивается в виде тепла. Синтез АТФ не происходит.

2-й этап - бескислородный (анаэробный).

Бескислородный распад протекает в цитоплазме клеток. Мономеры, образовавшиеся на первом этапе, расщепляются без участия кислорода, в несколько стадий. Расщепление происходит под действием ферментов с образованием энергии АТФ. Например, в мышцах (в цитоплазме клеток) молекула глюкозы распадается на две молекулы молочной кислоты и две молекулы АТФ

3-й этап - кислородное расщепление (аэробное дыхание).

Все реакции этой стадии катализируются ферментами и проходят при участии кислорода в митохондриях на кистах. Вещества, образовавшиеся в предыдущем этапе, окисляются до конечных продуктов - СО 2 и Н 2 О. При этом выделяется большое количество энергии. Данный процесс называют клеточным дыханием. При окислении двух молекул молочной кислоты образуется 36 молекул АТФ. В результате второго и третьего этапов при расщеплении одной молекулы С 6 Н 12 О 6 выделяется 38 молекул АТФ.

Анаэробная диссимиляция.

Распад глюкозы у анаэробныхбактерий может идти в бескислородных условиях. Этот процесс называется брожением . При брожении выделяется не вся энергия, заключенная в веществе, а лишь часть ее. Остальная энергия остается в химических связях в образовавшемся веществе. При спиртовом брожении образуется спирт и две молекулы АТФ.

Вопрос 3

Билет 5

1. Белки, их роль в организме;

2. Уровни организации живой материи;

3. Определить процентное содержание азотистых оснований в определенном фрагменте ДНК.

Вопрос 1

Белки.

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты.

Есть первичная, вторичная, третичная и четвертичная структуры белка. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи, скручиваясь в компактную структуру, образуют глобулу (шар) - это третичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка. При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы (денатурация). Иногда денатурированный белок при изменении условий вновь может восстановить свою структуру (ренатурация) и это возможно лишь тогда, когда не разрушена первичная структура белка.


Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Ферментативная. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны.

3. Структурная. Белки входят в состав мембран и органоидов клетки.

4. Транспортная. Белки связывают и переносят различные вещества и внутри клетки, и по всему организму. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

7. Белки-гормоны. Обеспечивают регуляторную функцию.

Синтез веществ, идущий в клетке, называют биологическим синтезомили сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией(лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называютобменом веществ и энергии.Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.

19. Обмен веществ и энергии в клетке. Фотосинтез, хемосинтез. Процесс ассимиляции (основные реакции). Обмен веществ представляет собой единство ассимиляции и диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Фотосинтез -это процесс превращения энергии солнечного света в энергию химических соединений. Фотосинтез -это процесс образования органических веществ(глюкозы,а затем крахмала)из неорганических веществ, в хлоропластах на свету с выделением кислорода. Протекает фотосинтез в 2 фазы: световая и теневая. Световая фаза протекает на свету. Во время световой фазы происходит возбуждение хлорофилла путем поглощения кванта света. В световой фазе происходит фотолиз воды с последующим выделением кислорода в атмосферу. Кроме того, в световой фазе фотосинтеза протекают следующие процессы: накопление протонов водорода, синтез АТФ из АДФ, присоединение H+ к специальному переносчику НАДФ

ИТОГ СВЕТОВОЙ РЕАКЦИИ:

Образование АТФ и НАДФ*H, выделение O2 в атмосферу.

Темновая фаза (цикл фиксации CO2, цикл Кальвина) протекает в строме хлоропласта. В темновой фазе происходит следующие процессы

Из световой реакции берется АТФ и НАДФ*H

Из атмосферы - CO2

1)Фиксация CO2

2)Образование глюкозы

3)Образование крахмала

ИТОГОВОЕ УРАВНЕНИЕ:

6CO2+6H2O---(хлорофилл,свет)-С6H12O6+6O2

Хемосинтез – синтез органических веществ за счет энергии химических реакций. Хемосинтез осуществляется бактериями Основные реакции фотосинтеза: 1) окисление серы: 2H2S + O2 = 2H20 + 2S

2S + O2 + 2H2O = 2H2SO4 2) окисление азота: 2NH3 + 3O2 = 2HNO2 + 2H2O 2HNO2 + O2 = HNO3 3) окисление кислорода 2H2 + O2 = 2H2O 4) окисление железа: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2

20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена. Обмен веществ представляет собой единство ассимиляции и диссимиляции. при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся Все функции, выполняемы клеткой, требуют затрат энергии, которая освобождается в процессе диссимиляции. Биологическое значение диссимиляции сводится не только к освобождению энергии, потребной клетке, но нередко и к разрушению веществ, вредных для организма Весь процесс диссимиляции, или энергетического обмена, состоит из 3 этапов: подготовительный, бескислородный и кислородный. В подготовительном этапе под действием ферментов происходит расщепление полимеров до мономеров. Так, белки расщепляются до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. В подготовительном этапе выделяется мало энергии и рассеивается обычно в виде тепла. 2) Бескислородный или анаэробный этап. Разберем на примере глюкозы. В анаэробном этапе происходит распад глюкозы до молочной кислоты: С6H12O6 + 2АДФ + Н3РО4 = 2C3H6O3 + 2Н2О + 2АТФ (молочная к-та) 3) Кислородный этап. При кислородном этапе вещества окисляются до СО2 и Н2О. При доступе кислорода пировиноградная кислота проникает в митохондрии и подвергается окислению: С3H6O3+6O2-6CO2+6H2O+36АТФ Суммарное уравнение: C6H12O6+6O2-6CO2+6H2O+38АТФ

Вопрос 1. Что такое диссимиляция? Перечис­лите ее этапы.

Диссимиляция, или энергетический об­мен, — это совокупность реакций расщепле­ния высокомолекулярных соединений, кото­рые сопровождаются выделением и запасани­ем энергии.

Диссимиляция у аэробных (кислорододы­шащих) организмов происходит в три этапа: подготовительный — расщепление вы­сокомолекулярных соединений до низкомоле­кулярных без запасания энергии;

бескислородный — частичное бескисло­родное расщепление соединений, энергия за­пасается в виде АТФ;

кислородный — окончательное расщепле­ние органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.

Диссимиляция у анаэробных (не исполь­зующих кислород) организмов происходит в два этапа: подготовительный и бескислород­ный. В данном случае органические вещества расщепляются не полностью и энергии запаса­ется гораздо меньше.

Вопрос 2. В чем заключается роль АТФ в обме­не веществ в клетке?

АТФ (аденозинтрифосфорная кислота) — нуклеотид, состоящий из азотистого основа­ния (аденина), пятиуглеродного моносахарида (рибозы) и трех остатков фосфорной кислоты. Это универсальное, встречающееся в самых разных клетках макроэргическое соединение, в котором между остатками фосфорной кисло­ты присутствуют две высокоэнергетические связи. При разрыве такой связи отщепляется остаток фосфорной кислоты и высвобождается большое количество энергии (40 кДж/моль). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фос­форной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требую­щие затрат энергии, сопровождаются пре­вращением молекул АТФ в АДФ (или даже в АМФ).

Вопрос 3. Какие структуры клетки осуществля­ют синтез АТФ?

В эукариотических клетках синтез основ­ной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пласти­дах АТФ образуется как промежуточный про­дукт световой стадии фотосинтеза.

Вопрос 4. Расскажите об энергетическом обме­не в клетке на примере расщепления глюкозы.

Энергетический обмен у аэробных организ­мов происходит в три этапа.

Подготовительный. В желудочно-кишечном тракте и лизосомах клеток под дейст­вием пищеварительных ферментов полисаха­риды расщепляются до моносахаридов, в част­ности до глюкозы. Выделяющаяся при этом энергия не запасается, а рассеивается в виде тепла.

Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:

C 6 Hi 2 0 6 -> 2С 3 Н 4 0 3

При этом 60% выделившейся энергии пре­вращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэроб­ных организмов происходит брожение — спиртовое (С 2 Н 5 ОН — этиловый спирт) или мо­лочнокислое (С 3 Н 6 0 3 — молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.

Кислородный. На этом этапе входящие в состав пировиноградной кислоты углерод и во­дород соединяются с кислородом с образовани­ем углекислого газа и воды. При этом осво­бождается большое количество энергии, боль­шая часть которой запасается в виде АТФ. При окислении двух молекул пировиноград­ной кислоты выделяется энергия, позволяю­щая образовать 36 молекул АТФ. Процесс этот идет в митохондриях и делится на две много­ступенчатые стадии (цикл Кребса и окисли­тельное фосфорилирование).

Итоговое уравнение кислородного пути диссимиляции:

С 6 Н 12 0 6 + 6O 2 + 38АДФ + 38Ф ->

31 августа 2015

Диссимиляция - это комплекс химических реакций, в которых происходит постепенный распад сложных органических веществ до более простых. Этот процесс сопровождается высвобождением энергии, значительная часть которой используется в синтезе АТФ.

Диссимиляция в биологии

Диссимиляция является процессом, противоположным ассимиляции. В качестве исходных веществ, подлежащих распаду, выступают нуклеиновые кислоты, белки, жиры и углеводы. А конечные продукты - это вода, углекислый газ и аммиак. В организме животных продукты распада по мере постепенного накопления выводятся наружу. А у растений углекислый газ выделяется частично, а аммиак в полном объеме применяется в процессе ассимиляции, служа исходным материалом для биосинтеза органических соединений.

Взаимосвязь диссимиляции и ассимиляции позволяет тканям организма постоянно обновляться. Например, в течение 10 дней в человеческой крови обновляется половина клеток альбумина, а за 4 месяца перерождаются все эритроциты. Соотношение интенсивности двух противоположных процессов обмена веществ зависит от многих факторов. Это и стадия развития организма, и возраст, и физиологическое состояние. В ходе роста и развития в организме преобладает ассимиляция, в результате образовываются новые клетки, ткани и органы, происходит их дифференциация, то есть масса тела увеличивается. В случае наличия патологий и при голодании процесс диссимиляции преобладает над ассимиляцией, и тело уменьшается в весе.

Видео по теме

Классификация организмов по характеру диссимиляции

Все организмы можно поделить на две группы, в зависимости от условий, в которых протекает диссимиляция. Это аэробы и анаэробы. Первым для жизнедеятельности требуется свободный кислород, вторые не испытывают необходимости в нем. У анаэробов диссимиляция протекает путем брожения, которое представляет собой бескислородное ферментативное расщепление органических веществ до более простых. Например, молочнокислое или спиртовое брожение.

Этапы диссимиляции у аэробных организмов: подготовительный этап

Расщепление органических веществ у аэробов осуществляется в три шага. При этом на каждом из них происходит несколько определенных ферментативных реакций.

Первый этап - подготовительный. Основная роль на этой стадии принадлежит у многоклеточных организмов пищеварительным ферментам, находящимся в желудочно-кишечном тракте. У одноклеточных - ферментам лизосом. В ходе первого этапа белки распадаются на аминокислоты, жиры образуют глицерин и жирные кислоты, полисахариды расщепляются на моносахариды, нуклеиновые кислоты на нуклеотиды.


Гликолиз

Второй этап диссимиляции - гликолиз. Он протекает без кислорода. Биологическая сущность гликолиза состоит в том, что он представляет собой начало расщепления и окисления глюкозы, в результате чего накапливается свободная энергия в виде 2 молекул АТФ. Это происходит в ходе нескольких последовательно идущих реакций, конечным итогом которых становится образование из одной молекулы глюкозы двух молекул пирувата и такого же количества АТФ. Именно в виде аденозинтрифосфорной кислоты запасается часть энергии, которая выделилась в результате гликолиза, Остальная часть подлежит рассеиванию в виде тепла. Химическая реакция гликолиза: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ.

В условиях недостатка кислорода в растительных клетках и в клетках дрожжей пирувират расщепляется на два вещества: этиловый спирт и углекислый газ. Это и есть спиртовое брожение.

Количество энергии, высвобождаемой при гликолизе, недостаточно для тех организмов, которые дышат кислородом. Именно поэтому в организме животных и человека при больших физических нагрузках в мышцах синтезируется молочная кислота, служащая резервным источником энергии и накапливающаяся в виде лактата. Характерным признаком данного процесса является появление боли в мышцах.

Кислородный этап

Диссимиляция - это очень сложный процесс, и третий кислородный этап также представляет собой две последовательно идущих реакции. Речь идет о цикле Кребса и окислительном фосфорилировании.

В ходе кислородного дыхания происходит окисление пирувирата до окончательных продуктов, которыми являются СО2 и Н2О. При этом выделяется энергия, запасаемая в виде 36 молекул АТФ. Затем эта же энергия обеспечивает синтез органических веществ в пластическом объеме. Эволюционно возникновение данного этапа связано с накоплением в атмосфере молекулярного кислорода и появлением аэробных организмов.

Местом осуществления окислительного фосфорилирования (клеточного дыхания) являются внутренние мембраны митохондрий, внутри которых имеются молекулы-переносчики, осуществляющие транспорт электронов к молекулярному кислороду. Энергия, образуемая на этой стадии, частично расссеивается в виде тепла, остальная же идет на образование АТФ.

Диссимиляция в биологии - это энергетический обмен, реакция которого выглядит так: С6Н12O6 + 6О2 → 6СО2 + 6Н2O + 38АТФ.

Таким образом, диссимиляция - это совокупность реакций, происходящих за счет органических веществ, которые были ранее синтезированы клеткой, и свободного кислорода, который поступил из внешней среды в процессе дыхания.

Обмен веществ и его типы

Он обеспечивает постоянство внутренней среды организма в изменяющихся условиях существования – гомеостаз . Обмен веществ слагается из двух взаимосвязанных и взаимопротивоположных процессов. Это процессы диссимиляции , в которых происходит расщепление органических веществ и выделенная энергия используется для синтеза молекул АТФ, и процессы ассимиляции, в которых энергия АТФ используется для синтеза собственных, необходимых организму соединений.

Процессы диссимиляции называют, также, катаболизмом и энергетическим обменом . А процессы ассимиляции носят еще названия анаболизма и пластического обмена . Такое обилие синонимов одного и того же понятия возникло потому, что реакции обмена веществ изучали ученые различных специальностей:

  • биохимики,
  • физиологи,
  • цитологии,
  • генетики,
  • молекулярные биологи.

Но все названия и термины прижились и активно используются учеными.

Формы поступления энергии в живые организмы

Для всех живых организмов Земли Солнце является основным источником энергии. Именно благодаря ему организмы удовлетворяют свои энергетические потребности.

Организмы, которые могут синтезировать органические соединения из неорганических, называются автотрофами. Они разделяются на две группы. Одни способны использовать энергию солнечного света. Это – фотосинтетики или фототрофы. В основном это - зеленые растения, цианобактерии (сине-зеленые водоросли).

Другая группа автотрофов использует энергию, которая освобождается во время химических реакций. Такие организмы называются хемотрофами или хемосинтетиками.

Грибы, большая часть животных и бактерий не могут сами синтезировать органические вещества. Такие организмы называются гетеротрофами. Для них источником энергии служат органические соединения, синтезированные автотрофами. Энергия используется живыми организмами для химических, механических, тепловых и электрических процессов.

Подготовительный этап энергетического обмена

Энергетический обмен принято условно разделять на три основных этапа. Первый этап назвали подготовительным. На этом этапе макромолекулы под воздействием ферментов расщепляются до мономеров. В ходе реакций происходит выделение довольно незначительного количества энергии, которое рассеивается в виде тепла.

Бескислородный этап энергетического обмена

Бескислородный (анаэробный) этап энергетического обмена происходит в клетках. Мономеры, которые образовались на предыдущем этапе (глюкоза, глицерин и т.п.), подвергаются дальнейшему многоступенчатому расщеплению без доступа кислорода. Главным на этом этапе является процесс расщепления молекулы глюкозы на молекулы пировиноградной или молочной кислоты с образованием двух молекул АТФ.

$C_6H_{12}O_6 + 2H_3PO_4 + 2АДФ → 2C_3H_6O_3 + 2АТФ + 2H_2O$

В ходе этой реакции (реакция гликолиза) выделяется около $200$ кДж энергии. Однако она не вся превращается в тепло. Часть ее используется для синтеза двух, богатых на энергию (макроэргических), фосфатных связей в молекулах АТФ. Глюкоза также расщепляется в ходе спиртового брожения.

$C_6H_{12}O_6 + 2H_3PO_4 + 2АДФ → 2C_2H_5OH + 2CO_2 + 2АТФ + 2H_2O$

Кроме спиртового существуют еще такие виды бескислородного брожения, как маслянокислое и молочнокислое.

Кислородный этап энергетического обмена

На этом этапе соединения, образованные на бескислородном этапе, окисляются до конечных продуктов реакции – углекислого газа и воды. Английский биохимик Адольф Кребс в $1937$ году открыл последовательность превращений органических кислот в матриксе митохондрий. В его честь совокупность этих реакций назвали циклом Кребса.

Замечание 1

Полное окисление молекул молочной или пировиноградной кислоты, образованных в ходе анаэробного процесса, до углекислого газа и воды сопровождается выделением $2800$ кДЖ энергии. Этого количества хватит на синтез $36$ молекул АТФ (в $18$ раз больше, чем на предыдущем этапе).

Суммарное уравнение кислородного этапа энергетического обмена выглядит так:

$2C_3H_6O_3 + 6O_2 + 36АДФ + 36H_3PO_4 → 6CO_2 + 42H_2O + 36АТФ$

Подводя общий итог, можно записать суммарное уравнение энергетического обмена:

$C_6H_{12}O_6 + 6O_2 + 38АДФ + 38H_3PO_4 → 6CO_2 + 44H_2O + 38АТФ$

На завершающей стадии происходит выведение продуктов метаболизма из организма.

Похожие публикации