Интернет-журнал дачника. Сад и огород своими руками

Тепловая нагрузка на отопление и прочие расчетные параметры: методики и примеры расчетов. Как произвести расчет тепловой нагрузки на отопление здания

Тема этой статьи — определение тепловой нагрузки на отопление и прочих параметров, нуждающихся в расчете, для . Материал ориентирован прежде всего на владельцев частных домов, далеких от теплотехники и нуждающихся в максимально простых формулах и алгоритмах.

Итак, в путь.

Наша задача — научиться рассчитывать основные параметры отопления.

Избыточность и точный расчет

Стоит с самого начала оговорить одну тонкость расчетов: абсолютно точные значения потерь тепла через пол, потолок и стены, которые приходится компенсировать системе отопления, вычислить практически невозможно. Можно говорить лишь о той или иной степени достоверности оценок.

Причина — в том, что на теплопотери влияет слишком много факторов:

  • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
  • Наличие или отсутствие мостиков холода.
  • Роза ветров и расположение дома на рельефе местности.
  • Работа вентиляции (которая, в свою очередь, опять-таки зависит от силы и направления ветра).
  • Степень инсоляции окон и стен.

Есть и хорошие новости. Практически все современные отопительные котлы и системы распределенного отопления (теплые полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.

С практической стороны это означает, что избыточная тепловая мощность повлияет лишь на режим работы отопления: скажем, 5 КВт*ч тепла будут отданы не за один час непрерывной работы с мощностью 5 КВт, а за 50 минут работы с мощностью 6 КВт. Следующие 10 минут котел или другой нагревательный прибор проведет в режиме ожидания, не потребляя электроэнергию или энергоноситель.

Следовательно: в случае вычисления тепловой нагрузки наша задача — определить ее минимально допустимое значение.

Единственное исключение из общего правила связано с работой классических твердотопливных котлов и обусловлено тем, что снижение их тепловой мощности связано с серьезным падением КПД из-за неполного сгорания топлива. Проблема решается установкой в контур теплоаккумулятора и дросселированием отопительных приборов термоголовками.

Котел после растопки работает на полной мощности и с максимальным КПД до полного прогорания угля или дров; затем накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

Большая часть прочих нуждающихся в расчете параметров тоже допускает некоторую избыточность. Впрочем, об этом — в соответствующих разделах статьи.

Перечень параметров

Итак, что нам, собственно, предстоит считать?

  • Общую тепловую нагрузку на отопление дома. Она соответствует минимально необходимой мощности котла или суммарной мощности приборов в распределенной системе отопления.
  • Потребность в тепле отдельной комнаты.
  • Количество секций секционного радиатора и размер регистра, соответствующий определенному значению тепловой мощности.

Обратите внимание: для готовых отопительных приборов (конвекторов, пластинчатых радиаторов и т.д.) производители обычно указывают полную тепловую мощность в сопроводительной документации.

  • Диаметр трубопровода, способного в случае водяного отопления обеспечить необходимый тепловой поток.
  • Параметры циркуляционного насоса, приводящего в движение теплоноситель в контуре с заданными параметрами.
  • Размер расширительного бака, компенсирующего тепловое расширение теплоносителя.

Перейдем к формулам.

Один из основных факторов, влияющих на ее значение — степень утепления дома. СНиП 23-02-2003, регламентирующий тепловую защиту зданий, нормирует этот фактор, выводя рекомендованные значения теплового сопротивления ограждающих конструкций для каждого региона страны.

Мы приведем два способа выполнения подсчетов: для зданий, соответствующих СНиП 23-02-2003, и для домов с ненормированным тепловым сопротивлением.

Нормированное тепловое сопротивление

Инструкция по расчету тепловой мощности в этом случае выглядит так:

  • За базовое значение берутся 60 ватт на 1 м3 полного (включая стены) объема дома.
  • Для каждого из окон к этому значению дополнительно добавляется 100 ватт тепла . Для каждой ведущей на улицу двери — 200 ватт.

  • Для компенсации увеличивающихся в холодных регионах потерь используется дополнительный коэффициент.

Давайте в качестве примера выполним расчет для дома размерами 12*12*6 метров с двенадцатью окнами и двумя дверьми на улицу, расположенного в Севастополе (средняя температура января — +3С).

  1. Отапливаемый объем составляет 12*12*6=864 кубометра.
  2. Базовая тепловая мощность составляет 864*60=51840 ватт.
  3. Окна и двери несколько увеличат ее: 51840+(12*100)+(2*200)=53440.
  4. Исключительно мягкий климат, обусловленный близостью моря, заставит нас использовать региональный коэффициент, равный 0,7. 53440*0,7=37408 Вт. Именно на это значение и можно ориентироваться.

Ненормированное тепловое сопротивление

Что делать, если качество утепления дома заметно лучше или хуже рекомендованного? В этом случае для оценки тепловой нагрузки можно использовать формулу вида Q=V*Dt*K/860.

В ней:

  • Q — заветная тепловая мощность в киловаттах.
  • V — отапливаемый объем в кубометрах.
  • Dt — разница температур между улицей и домом. Обычно берется дельта между рекомендованным СНиП значением для внутренних помещений (+18 — +22С) и средним минимумом уличной температуры в наиболее холодный месяц за последние несколько лет.

Уточним: рассчитывать на абсолютный минимум в принципе правильнее; однако это будет означать избыточные расходы на котел и отопительные приборы, полная мощность которых будет востребована лишь раз в несколько лет. Цена незначительного занижения расчетных параметров — некоторое падение температуры в помещении в пик холодов, которое несложно компенсировать включением дополнительных обогревателей.

  • К — коэффициент утепления, который можно взять из приведенной ниже таблицы. Промежуточные значения коэффициента выводятся аппроксимацией.

Давайте повторим вычисления для нашего дома в Севастополе, уточнив, что его стены представляют собой кладку толщиной 40 см из ракушечника (пористой осадочной породы) без внешней отделки, а остекление выполнено однокамерными стеклопакетами.

  1. Коэффициент утепления примем равным 1,2.
  2. Объем дома мы вычислили ранее; он равен 864 м3.
  3. Внутреннюю температуру примем равной рекомендованным СНиП для регионов с нижним пиком температур выше -31С — +18 градусам. Сведения о среднем минимуме любезно подскажет всемирно известная интернет-энциклопедия: он равен -0,4С.
  4. Расчет, таким образом, будет иметь вид Q = 864 * (18 — -0,4) * 1,2 / 860 = 22,2 КВт.

Как легко заметить, подсчет дал результат, отличающийся от полученного по первому алгоритму в полтора раза. Причина, прежде всего в том, что средний минимум, использованный нами, заметно отличается от абсолютного минимума (около -25С). Увеличение дельты температур в полтора раза ровно во столько же раз увеличит оценочную потребность здания в тепле.

Гигакалории

В расчетах количества тепловой энергии, получаемой зданием или помещением, наряду с киловатт-часами используется еще одна величина — гигакалория. Она соответствует количеству тепла, необходимому для нагрева 1000 тонн воды на 1 градус при давлении в 1 атмосферу.

Как пересчитать киловатты тепловой мощности в гигакалории потребляемого тепла? Все просто: одна гигакалория равна 1162,2 КВт*ч. Таким образом, при пиковой мощности источника тепла в 54 КВт максимальная часовая нагрузка на отопление составит 54/1162,2=0,046 Гкал*час.

Полезно: для каждого региона страны местными властями нормируется потребление тепла в гигакалориях на квадратный метр площади в течение месяца. Среднее по РФ значение — 0,0342 Гкал/м2 в месяц.

Комната

Как подсчитать потребность в тепле для отдельной комнаты? Здесь используются те же схемы расчетов, что для дома в целом, с единственной поправкой. Если к комнате примыкает отапливаемое помещение без собственных отопительных приборов, оно включается в расчет.

Так, если к комнате размером 4*5*3 метра примыкает коридор размером 1,2*4*3 метра, тепловая мощность отопительного прибора рассчитывается для объема в 4*5*3+1,2*4*3=60+14,4=74,4 м3.

Отопительные приборы

Секционные радиаторы

В общем случае информацию о тепловом потоке на одну секцию всегда можно найти на сайте производителя.

Если он неизвестен, можно ориентироваться на следующие приблизительные значения:

  • Чугунная секция — 160 Вт.
  • Биметаллическая секция — 180 Вт.
  • Алюминиевая секция — 200 Вт.

Как всегда, есть ряд тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет весьма значительным.

Впрочем: эффект сведется на нет, если подводки подключить диагонально или снизу вниз.

Кроме того, обычно производители отопительных приборов указывают мощность для вполне конкретной дельты температур между радиатором и воздухом, равной 70 градусам. Зависимость теплового потока от Dt линейна: если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно вдвое меньше заявленной.

Скажем, при температуре воздуха в комнате, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Для того, чтобы обеспечить мощность в 2 КВт, понадобится 2000/100=20 секций.

Регистры

Особняком в списке отопительных приборов стоят самодельные регистры.

На фото — отопительный регистр.

Производители по понятным причинам не могут указать их тепловую мощность; однако ее несложно вычислить своими руками.

  • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее наружного диаметра и длины в метрах, дельты температур между теплоносителем и воздухом в градусах и постоянного коэффициента 36,5356.
  • Для последующих секций, находящихся в восходящем потоке теплого воздуха, используется дополнительный коэффициент 0,9.

Давайте разберем очередной пример — вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, длиной 4 метра и температурой в 60 градусов в комнате с внутренней температурой +20С.

  1. Дельта температур в нашем случае равна 60-20=40С.
  2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
  3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
  4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
  5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

Диаметр трубопровода

Как определить минимальное значение внутреннего диаметра трубы розлива или подводки к отопительному прибору? Не станем лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для разницы между подачей и обраткой в 20 градусов. Именно это значение характерно для автономных систем.

Максимальная скорость потока теплоносителя не должна превышать 1,5 м/с во избежание появления шумов; чаще ориентируются на скорость в 1 м/с.

Внутренний диаметр, мм Тепловая мощность контура, Вт при скорости потока, м/с
0,6 0,8 1
8 2450 3270 4090
10 3830 5110 6390
12 5520 7360 9200
15 8620 11500 14370
20 15330 20440 25550
25 23950 31935 39920
32 39240 52320 65400
40 61315 81750 102190
50 95800 127735 168670

Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) . Пластиковые и металлопластиковые трубы обычно маркируются наружным диаметром, который на 6-10 мм больше внутреннего. Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.

Циркуляционный насос

Нам важны два параметра насоса: его напор и производительность. В частном доме при любой разумной протяженности контура вполне достаточно минимального для наиболее дешевых насосов напора в 2 метра (0,2 кгс/см2): именно это значение перепада обеспечивает циркуляцию системы отопления многоквартирных домов.

Необходимая производительность вычисляется по формуле G=Q/(1,163*Dt).

В ней:

  • G — производительность (м3/час).
  • Q — мощность контура, в который устанавливается насос (КВт).
  • Dt — перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).

Для контура, тепловая нагрузка на который составляет 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.

Расширительный бак

Один из параметров, нуждающихся в расчете для автономной системы — объем расширительного бачка.

Точный расчет основывается на довольно длинном ряде параметров:

  • Температуре и типе теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси расширяются сильнее.
  • Максимально рабочем давлении в системе.
  • Давлении зарядки бачка, зависящем, в свою очередь, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).

Есть, однако, один нюанс, позволяющий сильно упростить расчет. Если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в худшем — к разрушению контура, то его избыточный объем ничем не повредит.

Именно поэтому обычно берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.

Подсказка: чтобы узнать объем контура, достаточно заполнить его водой и слить ее в мерную посуду.

Заключение

Надеемся, что приведенные схемы вычислений упростят жизнь читателю и избавят его от многих проблем. Как обычно, прикрепленное к статье видео предложит его вниманию дополнительную информацию.

В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

В каких случаях производят расчет тепловой нагрузки

  • для оптимизации расходов на отопление;
  • для сокращения расчетной тепловой нагрузки;
  • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
  • для подтверждения расчетного лимита по потребляемой теплоэнергии;
  • в случае проектирования собственной системы отопления или пункта теплоснабжения;
  • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
  • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
  • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
  • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
  • если организация нее имеет возможности установить приборы учета теплоэнергии;
  • в случае увеличения потребления теплоэнергии по непонятным причинам.

На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

Приказ Министерства Регионального Развития № 610 от 28.12.2009 "Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок" () закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

  • капитальный ремонт здания;
  • реконструкция внутренних инженерных сетей;
  • повышение тепловой защиты объекта;
  • другие энергосберегающие мероприятия.

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Пример расчета тепловых нагрузок объекта коммерческого назначения

Это помещение на первом этаже 4-х этажного здания. Месторасположение - г. Москва.

Исходные данные по объекту

Адрес объекта г. Москва
Этажность здания 4 этажа
Этаж на котором расположены обследуемые помещения первый
Площадь обследуемых помещений 112,9 кв.м.
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 град. С
Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 град С
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.
Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления Ду-25 мм
Длина подающего трубопровода системы отопления L = 28,0 м.
ГВС отсутствует
Вентиляция отсутствует
0,02/47,67 Гкал

Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

Итоговый максимальный расход - 0,008958 Гкал/час или 23 Гкал/год.

В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

Формула расчета в Гкал

Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 - Т2) / 1000 , где:

  • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
  • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
  • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
  • 1 000 – коэффициент для получения результата расчета в Гкал.

Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв - tн.р) * (1 + Kн.р) * 0,000001 , где:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
  • V – объем строения по наружным замерам;
  • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
  • – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7 , где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% - 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

Расход тепла, взятый по максимуму за один час работы системы отопления,

Максимальный поток тепла, исходящий от одного радиатора,

Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:

  • q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • V H - объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

Высота потолков (стандартная - 2,7 м),

Тепловая мощность (на кв. м - 100 Вт),

Одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:

  • q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
  • q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:

  • V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
  • 1 000 - коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где


Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

  • «d» - поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Первым и самым важным этапом в нелегком процессе организации отопления любого объекта недвижимости (будь-то загородный дом или промышленный объект) является грамотное выполнение проектирования и расчета. В частности, следует обязательно рассчитать тепловые нагрузки на обогревательную систему, а также объем потребления тепла и топлива.

Выполнение предварительных расчетом необходимо не только для того, чтобы получить весь ассортимент документации для организации отопления объекта недвижимости, но еще и для понимания объемов топлива и тепла, подбора того или иного типа генераторов теплоты.

Тепловые нагрузки отопительной системы: характеристики, определения

Под определением следует понимать количество теплоты, которое в совокупности отдается приборами обогрева, установленными в доме или на другом объекте. Следует отметить, что перед установкой всей техники данный расчет производится для исключения каких-то неприятностей, лишних финансовых затрат и работ.

Расчет тепловых нагрузок на отопление поможет организовать бесперебойную и эффективную работу системы обогрева объекта недвижимости. Благодаря этому расчету можно быстро выполнить абсолютно все задачи теплоснабжения, обеспечить их соответствие нормам и требованиям СНиП.

Цена ошибки, допущенной в расчете, может быть довольно значительной. Все дело в том, что в зависимости от полученных расчетных данных, в отделении ЖКХ города будут выделяться максимальные расходные параметры, устанавливаются лимиты и прочие характеристики, от которых и отталкиваются при расчете стоимости услуг.

Общая тепловая нагрузка на современную систему отопления состоит из нескольких основных параметров нагрузок:

  • На общую систему центрального отопления;
  • На систему напольного отопления (если она имеется в доме) – теплого пола;
  • Систему вентиляции (естественной и принудительной);
  • Систему горячего водоснабжения;
  • На всевозможные технологические нужды: бассейны, бани и прочие подобные конструкции.

Основные характеристики объекта, важные для учета при расчете тепловой нагрузки

Наиболее правильно и грамотно расчетная тепловая нагрузка на отопление будет определена лишь в том случае, когда учтены абсолютно все, даже самые мелкие детали и параметры.

Перечень этот довольно большой и в него можно включить:

  • Тип и назначение объектов недвижимости. Жилое либо нежилое здание, квартира или административное строение – все это очень важно для получения достоверных данных теплового расчета.

Также, от типа строения зависит норма нагрузок, которую определяют компании теплопоставщики и, соответственно, расходы на отопление;

  • Архитектурная часть. Учитываются габариты всевозможных наружных ограждений (стен, полов, крыши), размеры проемов (балконы, лоджии, двери и окна). Важна этажность здания, наличие подвалов, чердаков и их особенности;
  • Температурные требования для каждого из помещений здания. Под этим параметром следует понимать режимы температуры для каждой комнаты жилого дома или зоны административного строения;
  • Конструкция и особенности наружных ограждений, в том числе, тип материалов, толщина, наличие утепляющих прослоек;

  • Характер назначения помещения. Как правило, присуще для производственных строений, где для цеха или же участка нужно создать какие-то определенные тепловые условия и режимы;
  • Наличие и параметры специальных помещений. Наличие тех же бань, бассейнов и прочих подобных конструкций;
  • Степень технического обслуживания – наличие горячего водопровода, типа централизованного отопления, систем вентиляции и кондиционирования;
  • Общее количество точек, из которых производится забор горячей воды. Именно на эту характеристику следует обращать особое внимание, ведь чем больше число точек – тем больше будет тепловая нагрузка на всю систему отопления в целом;
  • Число людей, проживающих в доме или находящихся на объекте. От этого зависят требования к влажности и температуре – факторы, которые входят в формулу расчета тепловой нагрузки;

  • Прочие данные. Для промышленного объекта к таким факторам, например, относится число смен, количество рабочих в одну смену, а также рабочих дней за год.

Что касается частного дома – нужно учесть количество проживающих людей, число санузлов, помещений и т.д.

Расчет нагрузок тепла: что включается в процесс

Непосредственно сам расчет нагрузки на отопление своими руками производится еще на стадии проектирования загородного коттеджа или другого объекта недвижимости – это связано с простотой и отсутствием лишних денежных затрат. При этом учитываются требования различных норм и стандартов, ТКП, СНБ и ГОСТ.

Обязательными к определению в ходе расчета тепловой мощности являются следующие факторы:

  • Теплопотери наружных ограждений. Включает в себя желаемые температурные режимы в каждой из комнат;
  • Мощность, требуемая для нагрева воды в помещении;
  • Количество теплоты, требуемое для подогрева вентиляции воздуха (в том случае, когда требуется принудительная приточная вентиляции);
  • Тепло, нужное для подогрева воды в бассейне или же бане;

  • Возможные развития дальнейшего существования обогревательной системы. Подразумевается возможность вывода отопления на мансарду, в подвал, а также всевозможные строения и пристройки;

Совет. С «запасом» рассчитывают тепловые нагрузки нужно для того, чтобы исключить возможность лишних финансовых затрат. Особенно актуально для загородного дома, где дополнительное подключение элементов отопления без предварительной проработки и подготовки будет стоить непомерно дорого.

Особенности расчета тепловой нагрузки

Как уже оговаривалось ранее, расчетные параметры воздуха в помещениях выбираются из соответствующей литературы. В то же время, из этих же источников производится подбор коэффициентов теплопередачи (учитываются еще и паспортные данные обогревательных агрегатов).

Традиционный расчет тепловых нагрузок на отопление требует последовательного определения максимального теплового потока от обогревательных приборов (все фактически расположенные в здании отопительные батареи), максимального часового расхода энергии тепла, а также общих затрат тепловой мощности за определенный период, например, отопительный сезон.

Приведенная выше инструкция по расчету тепловых нагрузок с учетом площади поверхности теплового обмена может быть применена для различных объектов недвижимости. Нельзя не отметить, что такой способ позволяет грамотно и максимально правильно разработать обоснование для использования эффективного обогрева, а также энергетического обследования домов и зданий.

Идеальный способ расчета для дежурного отопления промышленного объекта, когда подразумевается снижение температур в нерабочее время (учитываются еще и праздничные, выходные дни).

Методы определения тепловых нагрузок

В настоящее время тепловые нагрузки рассчитываются несколькими основными способами:

  1. Расчет теплопотерь посредством укрупненных показателей;
  2. Определение параметров через различные элементы ограждающих конструкций, добавочных потерь на нагрев воздуха;
  3. Расчет теплоотдачи всей установленной в строении отопительно-вентиляционной техники.

Укрупненный метод расчета нагрузок на отопление

Еще одним методом расчета нагрузок на систему отопления является так называемая укрупненная методика. Как правило, используется подобная схема в том случае, когда отсутствует информация о проектах либо же подобные данные не соответствуют фактическим характеристикам.

Для укрупненного расчета тепловой нагрузки отопления используется довольно простая и незамысловатая формула:

Qmax от.=α*V*q0*(tв-tн.р.)*10 -6

В формуле используются следующие коэффициенты: α является поправочным коэффициентом, учитывающим климатические условия в регионе, где построено здание (применяется в случае, когда расчетная температура отличная от -30С); q0 удельная характеристика отопления, выбираемая в зависимости от температуры наиболее холодной недели в году (так называемой «пятидневки»); V – наружный объем строения.

Виды тепловых нагрузок для учета в расчете

В ходе выполнения расчетов (а также при подборе оборудования) учитывается большое количество самых различных тепловых нагрузок:

  1. Сезонные нагрузки. Как правило, для них присущи следующие особенности:
  • В течение всего года происходит изменение тепловых нагрузок в зависимости от температуры воздуха снаружи помещения;
  • Годовые расходы теплоты, которые определяются метеорологическими особенностями того региона, где расположен объект, для которого рассчитываются тепловые нагрузки;

  • Изменение нагрузки на систему обогрева в зависимости от времени суток. За счет теплостойкости наружных ограждений здания такие значения принимаются как незначительные;
  • Расходы тепловой энергии вентиляционной системы по часам суток.
  1. Круглогодичные тепловые нагрузки. Следует отметить, что для систем обогрева и горячего водоснабжения большинство отечественных объектов имеют тепловое потребление на протяжении года, которое изменяется довольно мало. Так, например, летом расходы тепловой энергии по сравнению с зимой снижается практически на 30-35%;
  2. Сухое тепло – конвекционный теплообмен и тепловое излучение от других подобных устройств. Определяется за счет температуры сухого термометра.

Данный фактор зависит от массы параметров, среди которых всевозможные окна и двери, оборудование, системы вентиляции и даже воздухообмен через щели в стенах и перекрытия. Еще обязательно учитывается количество людей, которые могут находиться в помещении;

  1. Скрытое тепло – испарения и конденсация. Опирается на температуру влажного термометра. Определяется объем скрытой теплоты влажности и ее источниками в помещении.

В любом помещении на влажность оказывают влияние:

  • Люди и их количество, которые одновременно находятся в помещении;
  • Технологическое и другое оборудование;
  • Потоки воздуха, которые проходят через трещины и щели в конструкциях здания.

Регуляторы тепловых нагрузок, как возможность выхода из сложных ситуаций

Как можно видеть на многих фото и видео современных и прочего котельного оборудования, в комплект с ними входят специальные регуляторы тепловых нагрузок. Техника данной категории призвана обеспечить поддержку определенного уровня нагрузок, исключить всевозможные скачки и провалы.

Следует отметить, что РТН позволяют существенно сэкономить на оплате отопления, ведь во многих случаях (а особенно для промышленных предприятий) устанавливаются определенные лимиты, которые нельзя превышать. В противном случае, если будут зафиксированы скачки и превышения тепловых нагрузок, то возможны штрафы и подобные санкции.

Совет. Нагрузки на системы отопления, вентиляции и кондиционирования – важный момент в проектировании дома. Если самостоятельно выполнить работы по проектированию невозможно, то лучше всего доверить его специалистам. В то же время, все формулы простые и незамысловаты, а потому самим рассчитать все параметры не так уже и сложно.

Нагрузки на вентиляцию и ГВС – один из факторов тепловых систем

Тепловые нагрузки на отопление, как правило, рассчитываются в комплексе еще и с вентиляцией. Это сезонная нагрузка, она предназначена для замены отработанного воздуха на чистый, а также его нагрев до установленной температуры.

Часовые расхода теплоты на системы вентиляции рассчитываются по определенной формуле:

Qв.=qв.V(tн.-tв.) , где

Кроме, собственно, вентиляции рассчитываются тепловые нагрузки и на систему горячего водоснабжения. Причины для проведения подобных расчетов аналогичны вентиляции, да и формула несколько схожа:

Qгвс.=0,042rв(tг.-tх.)Пgср , где

r, в, tг.,tх. – расчетная температура горячей и холодной воды, плотность воды, а также коэффициент, в котором учтены значения максимальной нагрузки горячего водоснабжения к среднему значению, установленному ГОСТом;

Комплексный расчет тепловых нагрузок

Кроме, собственно, теоретических вопросов расчета, также выполняются и некоторые практические работы. Так, например, комплексные теплотехнические обследования включают в себя обязательное термографирование всех конструкций – стен, перекрытий, дверей и окон. Следует отметить, что такие работы позволяют определить и зафиксировать факторы, которые оказывают существенное влияние на теплопотери строения.

Тепловизионная диагностика покажет, каков будет реальный температурный перепад при прохождении некоего строго определенного количества теплоты через 1м2 ограждающих конструкций. Также, это поможет узнать расход тепла при определенном перепаде температур.

Практические измерения – незаменимая составляющая различных расчетных работ. В комплексе такие процессы помогут получить наиболее достоверные данные о тепловых нагрузках и теплопотерях, которые будут наблюдаться в определенном строении на протяжении определенного периода времени. Практичный расчет поможет достичь того, чего не покажет теория, а именно «узкие» места каждого сооружения.

Заключение

Расчет тепловых нагрузок, как и – важный фактор, вычисления которого должны обязательно производиться перед началом организации системы обогрева. Если все работы выполнить грамотно и подходить к процессу с умом, можно гарантировать обеспечить безотказную работу отопления, а также сэкономить деньги на перегреве и прочих лишних затратах.

Похожие публикации