Интернет-журнал дачника. Сад и огород своими руками

Общие сведения о строительных материалах. Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Исследование и диагностика наномасштабных объектов

Классификация материалов

Твердые материалы обычно подразделяются на три основные группы. Это металлы, керамика и полимеры. Это деление основывается, прежде всего, на особенностях химического строения и атомной структуры вещества. Большинство материалов можно вполне однозначно отнести к той или иной группе, хотя возможны и промежуточные случаи. Кроме того, следует отметить существование композитов, в которых комбинируются материалы, принадлежащие к двум или трем из перечисленных групп. Ниже будет дано краткое описание различных типов материалов и приведены их сравнительные характеристики.

Еще одним типом материалов являются современные специальные (advanced) материалы, предназначенные для применения в высокотехнологичных (high-tech) областях, таких как полупроводники, материалы биологического назначения, «умные» (smart) материалы и вещества, используемые в нанотехнологии.

МЕТАЛЛЫ

Материалы, принадлежащие к этой группе, включают в себя один или несколько металлов (таких как железо, алюминий, медь, титан, золото, никель), а также часто те или иные неметаллические элементы (например, углерод, азот или кислород) в сравнительно небольших количествах.

Атомы в металлах и сплавах располагаются в весьма совершенном порядке. Кроме того, по сравнению с керамикой и полимерными материалами плотность металлов сравнительно высока.

Что касается механических свойств, то все эти материалы относительно жесткие и прочные. Кроме того, они обладают определенной пластичностью (т.е. способностью к большим деформациям без разрушения), и сопротивляемостью разрушению, что обеспечило им широкое применение в разнообразных конструкциях.

В металлических материалах имеется множество делокализованных электронов, т. е. электронов, не связанных с определенными атомами. Именно присутствием таких электронов непосредственно объясняются многие свойства металлов. Например, металлы представляют собой исключительно хорошие проводники для электрического тока и тепла. Они непроницаемы для видимого света. Полированные поверхности металлов блестят. Кроме того, некоторые металлы (например, железо, кобальт и никель) обладают желательными для их применения магнитными свойствами.

КЕРАМИКА

Керамика - это группа материалов, занимающих промежуточное положение между металлами и неметаллическими элементами. Как общее правило, к классу керамики относятся оксиды, нитриды и карбиды. Так, например, некоторые из наиболее популярных видов керамик состоят из оксида алюминия (Al2O3), диоксида кремния (SiO2), нитрида кремния (Si3N4). Кроме того, к числу тех веществ, которые многие называют традиционными керамическими материалами, относятся различные глины (в частности те, которые идут на изготовление фарфора), а также бетон и стекло. Что касается механических свойств, то керамика - это относительно жесткие и прочные материалы, сопоставимые по этим характеристикам с металлами. Кроме того, типичные виды керамики очень твердые. Однако керамика исключительно хрупкий материал (практически полное отсутствие пластичности) и плохо сопротивляется разрушению. Все типичные виды керамики не проводят тепло и электрический ток (т.е. их электропроводность очень низкая).

Для керамики характерно более высокое сопротивление высоким температурам и вредным воздействиям окружающей среды. Что касается их оптических свойств, то керамика может быть прозрачным, полупрозрачным или совсем непрозрачным материалом, а некоторые оксиды, например, оксид железа (Fe2O3) обладают магнитными свойствами.

КОМПОЗИТЫ

Композиты представляют собой комбинацию из двух (или большего числа) отдельных материалов, относящихся к различным классам веществ, перечисленным выше, т.е. металлов, керамики и полимеров. Целью создания композитов было стремление достичь такого сочетания свойств различных материалов, которые не могут быть получены для индивидуальных компонент, а также обеспечить оптимальное сочетание их характеристик. Известно большое количество различных композитов, которые получены при совмещении металлов, керамики и полимеров. Более того, некоторые природные материалы также представляют собой композиты, например, это дерево и кость. Однако большинство композитов, которые рассматриваются в настоящей книге, это материалы, полученные из синтетических материалов.

Одним из наиболее популярных и знакомых всем композиционных материалов является стеклопластик. Этот материал представляет собой короткие стеклянные волокна, помещенные в полимерную матрицу, обычно в эпоксидную или полиэфирную смолу. Стеклянные волокна обладают высокой прочностью и жесткостью, но они хрупкие. В то же время полимерная матрица пластична, но ее прочность низкая. Комбинирование указанных веществ приводит к получению относительно жесткого и высокопрочного материала, который, тем не менее, обладает достаточной пластичностью и гибкостью.

Другим примером технологически важного композита являются углепластики - полимеры, армированные углеродными волокнами (CFRP). В этих материалах в полимерную матрицу помещают углеродные волокна. Материалы этого типа более жесткие и более прочные по сравнению со стеклопластиками, но в то же время более дорогие. Углепластики используют в аэрокосмической технике, а также при изготовлении высококачественного спортивного оборудования, например велосипедов, клюшек для гольфа, теннисных ракеток, лыж и сноубордов.

ПРОГРЕССИВНЫЕ МАТЕРИАЛЫ

Материалы, которые предназначены для использования в высокотехнологичных изделиях («хай-тек») иногда условно определяют термином «прогрессивные» материалы. Под высокими технологиями обычно имеются в виду устройства или изделия, работа которых основана на использовании сложных современных принципов. К числу таких изделий относится различное электронное оборудование, в частности цифровые видео-аудио камеры, CD/DVD проигрыватели, компьютеры, оптико-волоконные системы, а также космические спутники, изделия аэрокосмического назначения и ракетных технологий.

Прогрессивные материалы, по существу, представляют собой обычно типичные обсуждавшиеся выше вещества, но с улучшенными показателями свойств, но также и новые материалы, обладающие выдающимися характеристиками. Эти материалы могут быть металлами, керамикой или полимерами, однако их стоимость обычно очень высока. К числу прогрессивных материалов также относятся полупроводники, биоматериалы и вещества, которые мы называем «материалами будущего». Это так называемые «умные» материалы и изделия нанотехнологии, которые предназначены, например, для изготовления лазеров, интегральных схем, магнитных хранителей информации, дисплеев на жидких кристаллах и оптических волокон.

ПОЛУПРОВОДНИКИ

Полупроводники по электрическим свойствам занимают промежуточное положение между электропроводящими материалами (металлами и металлическими сплавами) и изоляторами (керамикой и полимерами). Кроме того, электрические характеристики полупроводников крайне чувствительны к присутствию минимальных количеств посторонних атомов, концентрацию которых необходимо контролировать вплоть до уровня очень малых областей. Создание полупроводниковых материалов сделало возможным разработку интегральных систем, которые произвели революцию в электронике и компьютерной технике (даже если не упоминать изменения в нашей жизни) в течение трех последних десятилетий.

БИОМАТЕРИАЛЫ

Биоматериалы используют для создания имплантатов для тела человека, которые призваны заменить больные или разрушенные органы или ткани. Материалы этого типа не должны выделять токсичных веществ и должны быть совместимыми с тканями человека (т.е. не должны вызывать реакции отторжения). Все перечисленные типы веществ - металлы, керамика, полимеры и полупроводники - могут быть использованы в качестве биоматериалов. В качестве примера можно привести некоторые биоматериалы, которые применяют для изготовления искусственных тазобедренных суставов.

МАТЕРИАЛЫ БУДУЩЕГО

«Умными» (или интеллектуальными) материалами называют группу новых искусственно разрабатываемых веществ, которые оказывают существенное влияние на многие современные технологии. Определение «умные» означает, что эти материалы способны чувствовать изменения в окружающей среде и отзываться на эти изменения заранее определенным образом - качество, присущее живым организмам. Концепция «умных» материалов также была распространена на сложные системы, построенные как из «умных», так и традиционных веществ.

В качестве компонентов умных материалов (или систем) могут использоваться некоторые типы датчиков (распознающих входящие сигналы), а также исполнительные системы (активаторы), играющие роль отвечающих и адаптивных устройств. Последние могут использоваться для изменения формы, положения, собственных частот или механических характеристик как ответа на изменение температуры, интенсивности освещенности, напряженности электрического или магнитного полей.

В качестве активаторов обычно используют материалы четырех типов: это сплавы с памятью к изменению формы, пьезоэлектрические виды керамики, магнитострикционные материалы и электрореологические/электромагнитные жидкости.

Сплавы «с памятью» - это металлы, которые после деформирования возвращаются в исходную форму, если изменилась температура.

Пьезоэлектрические виды керамики расширяются и сжимаются в ответ на изменение электрического поля (или напряжения); если же их размеры изменяются, то это приводит к возбуждению электрического сигнала. Поведение магнитострикционных материалов аналогично реакции пьезоэлектриков, но только как реакция на изменение магнитного поля. Что касается электро- и магнитореологических жидкостей, то это такие среды, которые претерпевают огромные изменения вязкости в ответ на изменение электрического или магнитного поля, соответственно.

Материалы/устройства, используемые в качестве датчиков, могут быть оптическими волокнами, пьезоэлектриками (к их числу относятся некоторые полимеры) и микроэлектромеханическими устройствами, аббревиатура MEMS.

В качестве примера «умных» устройств можно привести систему, используемую в вертолетах для того, чтобы снизить шум в кабине, создаваемый при вращении лопастей. Пьезоэлектрические датчики, встроенные в лопасти, отслеживают напряжения и деформации; сигнал передается от этих датчиков к исполнительному механизму, который с помощью компьютера генерирует «антишум», гасящий звук от работы винтов вертолета.

НАНОТЕХНОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

Вплоть до самого недавнего времени общепринятая процедура работ в области химии и физики материалов состояла в том, что вначале изучались весьма крупные и сложные структуры, а затем исследования переходили на анализ более мелких фундаментальных блоков, составляющих эти структуры. Этот подход иногда назывался «сверху - вниз». Однако с развитием техники сканирующей микроскопии, которая позволила наблюдать отдельные атомы и молекулы, оказалось возможным манипулировать атомами и молекулами с тем, чтобы создавать новые структуры, и тем самым получать новые материалы, которые строятся на основе элементов атомного уровня размеров (так называемый «дизайн материалов»). Эти возможности аккуратно собирать атомы открыли перспективы создавать материалы с механическими, электрическими, магнитными и другими свойствами, которые были бы недостижимы при использовании иных методов. Мы назовем этот подход «снизу - вверх», а изучением свойств таких новых материалов занимается нанотехнология, где приставка «нано» означает, что размеры структурных элементов составляют величины порядка нанометра (т.е. 10–9 м). Как правило, речь идет о структурных элементах с размерами меньше 100 нм, что эквивалентно примерно 500 диаметрам атома.

Одним из примеров материалов рассматриваемого типа являются углеродные нанотрубки. В будущем, несомненно, нам удастся найти все больше и больше областей, в которых проявятся достоинства нанотехнологичных материалов.

НЕОБХОДИМОСТЬ СОЗДАНИЯ НОВЫХ МАТЕРИАЛОВ

Несмотря на то, что за последние несколько лет был достигнут огромный прогресс в области материаловедения и технологии применения материалов, все же остается необходимость в создании еще более совершенных и специализированных материалов, а также в оценке взаимосвязей между производством таких материалов и его влиянием на окружающую среду. По этому вопросу необходимо дать некоторые комментарии, чтобы обрисовать возможные перспективы в этой области.

Создание ядерной энергетики предлагает определенные обещания будущего, но здесь остаются многочисленные проблемы, связанные с разработкой новых материалов, которые необходимы на всех стадиях - от системы размещения топлива в реакторе до хранения радиоактивных отходов.

Большие затраты энергии связаны с перевозками. Уменьшение веса транспортирующих устройств (автомобилей, самолетов, поездов и т.д.), также как и увеличение температуры, при которой работают двигатели, будет способствовать более эффективному потреблению энергии. Для этого требуется создать высокопрочные легкие инженерные материалы, равно как и материалы, которые могут работать в условиях повышенных температур.

Далее, существует общепризнанная необходимость в новых экономически обоснованных источниках энергии, а также в более эффективном использовании существующих источников. Несомненно, что материалы с нужными характеристиками играют огромную роль в развитии этого направления. Так, например, была продемонстрирована возможность прямого преобразования солнечной энергии в электрический ток. В настоящее время солнечные батареи представляют собой довольно сложные и дорогостоящие устройства. Несомненно, что должны быть созданы новые относительно дешевые технологические материалы, которые должны быть более эффективными в осуществлении использования солнечной энергии.

Еще одним очень привлекательным и вполне реальным примером в технологии преобразования энергии служат водородные топливные элементы, которые к тому же обладают тем преимуществом, что не загрязняют окружающую среду. В настоящее время только начинается использование этой технологии в электронных устройствах; в перспективе такие элементы могут использоваться как силовые установки в автомобилях. Для создания более эффективных топливных элементов нужны новые материалы, а для производства водорода необходимы новые катализаторы.

Для поддержания качества окружающей среды на требуемом уровне нам необходимо осуществлять контроль состава воздуха и воды. Для осуществления контроля загрязнений используют различные материалы. Кроме того, необходимо усовершенствовать методы переработки и очистки материалов с тем, чтобы снизить загрязнение окружающей среды, т.е. стоит задача создавать меньше отходов и меньше вредить окружающей нас природе при добыче полезных ископаемых. Следует также учесть, что при производстве некоторых материалов образуются токсичные вещества, так что следует учесть возможный ущерб экологии от сброса таких отходов.

Многие используемые нами материалы получают из невосполнимых ресурсов, т.е. источников, которые не могут быть регенерированы. Это относится, например, к полимерам, первичным сырьем для которых является нефть, и к некоторым металлам. Эти невосполнимые ресурсы постепенно исчерпываются. Отсюда возникает необходимость: 1) обнаружения новых источников этих ресурсов; 2) создание новых материалов со свойствами, аналогичными существующим, но менее наносящих ущерб окружающей среде; 3) усиления роли процессов рециклинга и, в частности, разработки новых технологий, позволяющих осуществлять рециклы. Как следствие всего этого возникает необходимость экономической оценки не только производства, но и учета экологических факторов, так что оказывается необходимым проанализировать весь жизненный цикл материала - «от колыбели до могилы» - и производственный процесс в целом.

Литье - это способ изготовления заготовки или изделия заполнением полости заданной конфигурации жидким металлом с последующим его затвердеванием.Заготовку или изделие, получаемое методом литья, называют отливкой.

Литейное производство - основная заготовительная база всех направлений машиностроения. Во многих случаях литье - единственно возоможный способ получения заготовок сложной формь:. Литые заготовки являются наиболее дешевыми, а зачастую имеют минимальный припуск на механическую обработку.

Литье в оболочковые формы.

Литейная форма здесь представляет собой оболочку толщиной 6-10 мм, изготовленную из материала огнеупорной основы (наполнителя) и синтетической смолы в качестве связующего. Принцип получения оболочек заложен в свойствах связующего материала, способного необратимо отверждаться при нагревании. В качестве огнеупорной основы широко используют кварцевый песок. Связующим материалом являются фенолформальдегидные синтетические термореактивные смолы. Литьем в оболочковые формы получают отливки повышенной точности, более лучшего качества поверхности, чем при литье в песчаные формы. Процесс чрезвычайно производителен и легко поддается механизации.

Список использованной литературы

    Барташевич А.А. Материаловедение. – Ростов н/Д.: Феникс, 2008.

    Вишневецкий Ю.Т. Материаловедение для технических колледжей: Учебник. – М.: Дашков и Ко, 2008.

    Заплатин В.Н. Справочное пособие по материаловедению (металлообработка): Учеб. пособие для НПО. – М.: Академия, 2007.

    Материаловедение: Учебник для ВУЗов. / Под ред. Арзамасова Б.Н. – М.: МГТУ им. Баумана, 2008.

    Материаловедение: Учебник для СПО. / Адаскин А.М. и др. Под ред. Соломенцева Ю.М. – М.: Высш. шк., 2006.

    Материаловедение: Учебник для СПО. / Под ред. Батиенко В.Т. – М.: Инфра-М, 2006.

    Моряков О.С. Материаловедение: Учебник для СПО. – М.: Академия, 2008.

    Основы материаловедения (металлообработка): Учеб. пособие для НПО. / Заплатин В.Н. – М.: Академия, 2008.

Общие сведения о материалах и их свойствах

КРАТКИЕ СВЕДЕНИЯ О СТРОИТЕЛЬНЫХ МАТЕРИАЛАХ

Общие сведения о материалах и их свойствах

Виды основных строительных материалов. К основным строительным материалам относятся: лесные, природные каменные, керамические материалы и изделия, неорганические (минеральные) вяжущие вещества (цемент, глина, алебастр и пр.) и изделия из них, строительные растворы для кладки и штукатурки, искусственные каменные материалы и изделия на основе вяжущих, битумные и теплоизоляционные материалы, строительные металлы, металлические, изделия и лакокрасочные материалы. В последнее время в строительстве широко внедряются различные материалы, изготовляемые на основе пластических масс.

Основные свойства строительных материалов. Для правильного применения необходимо знать физико-механические и химические свойства строительных материалов, приведенные ниже.

Плотность - масса единицы объема материала в абсолютно плотном состоянии без пор и пустот, кг/м 3 ,

где - масса образца, кг; - объем образца в абсолютно плотном состоянии, м 3 .

Относительная плотность - отношение плотности строительного материала в естественном состоянии (с порами) к плотности абсолютно плотного тела или отношение объема материала в абсолютно плотном состоянии к его внешнему объему в естественном состоянии , отн. ед.,

Относительная плотность может быть выражена и в процентах:

Насыпная плотность - это масса единицы объема рыхлого материала, насыпанного в какую-либо тару без уплотнения.

Пористость - степень заполнения объема материала порами.

Относительная плотность и пористость в сумме равны единице, т.е.

Или

Водопоглощение - свойство материала впитывать и удерживать в себе воду. Водопоглощение определяется по разности масс образца материала в насыщенном водой и в абсолютно сухом состоянии и выражается в процентах от массы сухого материала.

Влажность - содержание воды в материале (по массе), выраженное в %.

Водопроницаемость - способность материала пропускать воду под давлением. Степень водопроницаемости измеряется количеством воды, прошедшей за 1 с через 1 м 2 поверхности материала при заданном постоянном давлении.

Морозостойкость - способность материала в насыщенном водой состоянии выдерживать многократные попеременные замораживания и оттаивания без заметных признаков разрушения и без значительного понижения прочности. От морозостойкости материала зависит долговечность многих элементов здания.

Теплопроводность - способность материала передавать через свою толщу тепловой поток, возникающий при наличии разности температур на ограничивающих его поверхностях. Теплопроводность измеряется в килоджоулях (кДж).

Общее количество теплоты , кДж, прошедшее через ограждение, может быть выражено формулой

где - коэффициент теплопроводности материала, кВт/м·°С;

Площадь ограждения, м 2 ;

Толщина ограждения, м;

Разность температур на противоположных поверхностях ограждения, °С;

Время, с.

Полагая , , , , получим значение коэффициента теплопроводности

который для данного материала зависит от его физических свойств (пористости, влажности, плотности и т.п.)

Теплоемкость - свойство материала поглощать тепло при нагревании и отдавать его при охлаждении. Теплоемкость измеряется величиной коэффициента теплоемкости С (называемым иногда удельной теплоемкостью), который представляет собой количество тепла в Дж, необходимое для нагревания 1 кг данного материала на 1°С.

Огнестойкость - способность материалов выдерживать без разрушения действие высоких температур. По огнестойкости строительные материалы делятся на три группы:

Несгораемые, (бетон, кирпич), под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются;

Трудносгораемые (фибролит, асфальтовый бетон), под воздействием огня или высокой температуры трудно воспламеняются, обугливаются или тлеют; после удаления огня тление прекращается;

Сгораемые (дерево и др.), под воздействием огня воспламеняются и продолжают гореть или тлеть после удаления источника огня. Некоторые материалы этой группы воспламеняются при воздействии высокой температуры.

Огнеупорность - способность материалов противостоять длительному воздействию высоких температур, не размягчаясь и деформируясь.

Химическая стойкость - способность материалов сопротивляться действию кислот, щелочей, солей, растворенных в воде.

Прочность - способность материала сопротивляться разрушению под действием внутренних напряжений, возникающих в нем от нагрузки или других факторов и вызывающих сжатие, растяжение, срез, изгиб или кручение. Например, прочность материала при сжатии и растяжении оценивают величиной предела прочности R, Па, определяемой по формуле

F- площадь сечения образца, м 2 .

Таким образом, предел прочности - это напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.

Твердость - способность материала сопротивляться проникновению (внедрению) в него другого, более твердого тела.

Упругость - способность материала деформироваться и вновь восстанавливать свою первоначальную форму и размеры после снятия нагрузки, под действием которой она в той или другой мере изменялась.

Пластичность - способность материала под влиянием действующих на него нагрузок изменять размеры и форму в значительных пределах без образования трещин и нарушения прочности и сохранять принятую форму после их снятия.

Хрупкость - свойство материала под действием внешних сил разрушаться внезапно, без предварительной деформации.

Выпускаемые строительные материалы должны соответствовать государственным стандартам (ГОСТам), представляющим собой официально утвержденные документы, в которых содержится полное описание материала, изделия или детали. ГОСТами устанавливаются требования, которым должны отвечать строительные материалы, и правила их приемки.

Лесные материалы

Строение древесины. При рассмотрении поперечного разреза древесного ствола можно различать в нем следующие части: кору, камбий, собственно древесину и сердцевину.

Кора состоит из наружного слоя - корки и внутреннего - луба. Под слоем луба находится тонкий слой камбия. За камбием располагается толстый слой древесины, состоящий из ряда тонких концентрических колец. Каждое такое кольцо соответствует одному году жизни дерева и носит название годичного кольца.

В центре ствола находится сердцевина. У сосны, дуба и кедра ядро имеет более темную окраску; у ели, пихты, бука центральная часть ствола не отличается по цвету от наружной и носит название «спелой древесины». Имеются породы деревьев, у которых ядро отсутствует (береза; клен; ольха); такие породы называют заболонными.

Свойства древесины. Влажность. Большое влияние на технические свойства древесины оказывает ее влажность. По степени влажности различают древесину: мокрую (влажность больше, чем у свежесрубленной), свежесрубленную (влажность 35% и более), воздушно-сухую (влажность 20-15%) и комнатно-сухую (влажность 13-8%).

Усушка и разбухание. Изменение влажности древесины вызывает изменение ее объема, что ведет к усушке или разбуханию. Вследствие неоднородности строения древесина усыхает и разбухает в различных направлениях неодинаково, что влечет за собой коробление или появление трещин в конструкциях. Поэтому следует применять древесину с влажностью, соответствующей условиям ее эксплуатации; для этого производится естественная или искусственная сушка.

Механические свойства древесины. Прочность древесины в различных направлениях неодинакова. Так, прочность древесины при растяжении вдоль волокна в 20-30 раз больше, чем поперек волокна. Такое же явление наблюдается и при сжатии древесины.

Основные древесные породы, применяемые в строительстве.

В строительстве наибольшее применение имеют хвойные породы: сосна, ель, лиственница, пихта, кедр. Лиственные породы: дуб, бук, ясень, березу, клен, чинару, грушу и др. - применяют, главным образом, для изготовления столярных изделий и для внутренней отделки зданий. В целях экономии ценных пород леса там, где это возможно, и особенно для временного и подсобного строительства следует применять такие лиственные породы как ольха, липа, осина и тополь.

Сортамент лесных материалов. Круглый лес в зависимости от его диаметра в верхнем торце (отрубе) подразделяется на бревна, подтоварник и жерди. Бревна в верхнем отрубе должны иметь диаметр не менее 120 мм, подтоварник от 80 до ПО мм и жерди от 30 до 70 мм. Пиломатериалы получают путем продольной распиловки бревен. В зависимости от качества древесины и наличия пороков пиломатериалы из хвойных пород делятся на 5 сортов.

В строительстве применяют пиломатериалы следующих видов (рис. 2.1): пластины, четвертины, горбыль, доски (ширина более двойной толщины); бруски и брусья (ширина не более двойной толщины). В зависимости от чистоты кромок, доски делят на необрезные, полуобрезные и обрезные.


Длина досок и брусьев установлена от 1 до 6,5 м с градацией через 0,25 м. В зависимости от способа обработки брусья различают: двухкантные - опиленные с двух сторон - и четырехбитные - опиленные с четырех сторон.

Отдел народного образования МОГО «Инта»

Исследовательская деятельность как способ познания

свойств и качеств материалов.

Из опыта работы Степановой О. В.

воспитателя МБДОУ №25 «Радуга»

г. Инта 2015 год

1. Введение

2. Организация экспериментальной деятельности по ознакомлению с материалами и свойствами предметов.

3. Формы организации экспериментальной деятельности.

4. Организация предметно - развивающей среды по развитию поисково-познавательной деятельности.

5. Соблюдение правил безопасности при организации экспериментальной деятельности с детьми дошкольного возраста.

6. Работа с родителями

7. Приложения

Введение

Познавательная деятельность – это специфическая человеческая форма отношения к окружающему миру, содержанием которой является взаимодействие субъекта с объектом, построенное таким образом, что этот процесс отражается и воспроизводится в мышлении. Результатом такой деятельности являются новые знания о мире.

На роль органов чувств в развитии познавательной деятельности в своё время указывал И.М.Сеченов, который называл их очень образно «щупальцами» или «осведомителями мозга». И действительно, всё познание человеком окружающего происходит при участии органов чувств.

Ребёнок рождается уже с готовыми к функционированию органами чувств (он видит, слышит, чувствует прикосновение, запах и многое другое), однако к моменту рождения деятельность этих органов ещё крайне несовершенна, и их развитие, как и вообще всё развитие ребёнка, требует определённых условий. Поэтому при воспитании детей необходимо уделять большое внимание правильному развитию зрительных и слуховых реакций.

Дети в процессе своей деятельности – в игре, в занятиях – должны чувственным образом познавать свойства предметов (цвет, форму, тяжести), получать первичные представления о величине, пространстве, числе и т.д., а для этого должны быть созданы благоприятные условия. Обогащение чувственного опыта ребёнка является важной задачей воспитания.

Результаты современных психологических и педагогических исследований (Ю. К. Бабанский, Л. А. Венгер, Н. А. Ветлугина, Н. Н. Поддьяков, И. Д. Зверев, В. В. Запорожец и др.) показывают, что возможности умственного развития детей дошкольного возраста значительно выше, чем это предполагалось ранее. Так, оказалось, что дети могут познавать не только внешние, наглядные свойства окружающих предметов и явлений, но и их внутренние связи и отношения. В период дошкольного детства формируются способности к начальным формам обобщения, умозаключения, абстракции. Однако такое познание осуществляется детьми не в понятийной, а в основном в наглядно-образной форме, в процессе деятельности с познаваемыми предметами, объектами. В ходе экспериментально-познавательной деятельности создаются такие ситуации, которые ребенок разрешает посредством проведения опыта и, анализируя, делает вывод, умозаключение, самостоятельно овладевая представлением о том или ином физическом законе, явлении.

Профессор Академии творческой педагогики РАО Н. Н. Поддъяков, проанализировав и обобщив свой богатейший опыт исследовательской работы в системе дошкольного образования, пришел к заключению, что в детском возрасте ведущим видом деятельности является экспериментирование. Чем младше ребенок, тем больше он экспериментирует. Еще Л. С. Выготский говорил, что деятельность ребенка раннего возраста можно отнести к экспериментированию.

Однако эта идея не всеми принята, слишком устойчивым было представление о том, что ведущим видом деятельности дошкольников является игра. Между тем, энциклопедический словарь дает такое определение: «Игра – вид непродуктивной деятельности, мотив которой заключается не в ее результатах, а в самом процессе». В обиходе игрой считают любое дело, которое служит антиподом понятия «работа»: работа – это то, что полезно, а игра – то, что не серьезно. Именно из-за таких упрощенных представлений активность малыша кажется игрой.

Природа снабжает своих чад многочисленными приспособлениями, позволяющими выжить с первых минут после рождения. Их можно разделить на две группы: рефлексы и инстинкты. У животных количество инстинктов достаточно велико: это поиск и добывание пищи, сохранение жизни, поиск полового партнера, продолжение рода, спасение от врагов, суточные и сезонные миграции, общение с представителями своего и чужого видов и др.

Человек, в отличие от животных, при рождении инстинктов не имеет. Как минимум, до семи лет он не способен искать и добывать себе пищу, у него отсутствует такой важнейший инстинкт, как сохранение жизни. Есть страх гибели, но это эмоции, а не инстинкт. Готовые сложные поведенческие формы спасения жизни в различных ситуациях у человека тоже отсутствуют. Этому он учится постепенно, запоминая, как и почему обжигается, падает, ушибается, колется, режется. Человек имеет либо рефлексы (отдергивание руки, шараханье от источника опасности), либо осознанные реакции (выпрыгивание, убегание, тушение пожара), которые формируются на более поздних этапах онтогенеза как результат жизненного опыта.

Человеческий детеныш более беспомощен, чем детеныш животного, и остается таковым гораздо дольше, чем его «младшие братья». Природа на стадии создания человека совершила две крупных инновации:

Создала огромный банк памяти в виде человеческого мозга – равного которому по емкости нет ни у одного живого организма,

Вложила в человека потребность загружать этот банк базой данных, причем загружать самостоятельно, а не извне, как компьютер.

Таким образом, Природа снабдила ребенка одним единственным инстинктом накопления разнообразных сведений о мире, передав на многие годы все остальные функции взрослым.

У детей реакция на новизну выражена сильнее, чем на пищу. Специфическое мышление детей, основанное на обследовании объектов, названо ручным. Этим термином пользовались И. П. Павлов и Л. С. Выготский. Позже он был заменен термином действенное мышление.

И так, обладая ручным мышлением, ребенок, ребенок манипулирует предметами, знакомится с их свойствами и полученными сведениями заполняет пока еще почти пустой банк памяти.

На заполнение банка памяти природа отвела 20-25 лет – больше, чем продолжительность всей жизни у большинства животных.

Экспериментирование как вид деятельности у ребенка делится на несколько этапов:

1 этап: Заполнение базы основными сведениями о мире – изучение и запоминание свойств всех объектов, без какой бы то ни было избирательности, без деления их на нужные и бесполезные. В память загружаются речь (языковые значения), сведения о внешнем виде и свойствах объектов окружающего мира. В это время человеку надо запомнить, как выглядит каждый объект, как он звучит, какой имеет вкус и запах, какие создает тактильные и мышечные ощущения, в каких вариантах встречается и во что превращается при разных воздействиях. Длится этот период примерно до трех лет

2 этап: Установление причинно-следственных связей, существующих между объектами и явлениями. Потребность в экспериментировании становится более мощной, собственные действия – более масштабными. К мысленному моделированию дети пока не способны, поэтому предвидеть последствия своих действий не могут. В этом возрасте дети еще не могут оперировать знаниями в вербальной форме, без опоры на наглядность, поэтому они стремятся установить все связи самостоятельно. Продолжительность этого периода примерно от 3 до 5 лет.

3 этап: Осознанное экспериментирование как способ познания мира. Начавшись с пятилетнего возраста этот период длится всю жизнь. В это время появляются новые способы познания:

Получение знаний в вербальной форме от другого человека,

Установление закономерностей путем самостоятельных логических рассуждений.

Как доказал Н. Н. Поддъяков, лишение возможности экспериментировать, постоянные ограничения самостоятельной деятельности в раннем и дошкольном возрасте приводят к серьезным психическим нарушениям, которые сохраняются на всю жизнь, негативно сказываются на развитии и саморазвитии ребенка, на способности обучаться в дальнейшем. Именно экспериментирование является ведущим видом деятельности у маленьких детей.

Однако долгое время это не учитывалось системой дошкольного образования, а самостоятельные инициативы детей расценивались как нарушение дисциплины, поскольку не подверженные контролю, они на самом деле чреваты негативными последствиями.

Выход из этого положения в одном – в широком внедрении метода организованного и контролируемого детского экспериментирования – дома и в детском саду, индивидуального и коллективного во всех видах деятельности.

В образовательном процессе дошкольного учреждения учебное экспериментирование является тем методом обучения, который позволяет ребенку моделировать в своем сознании картину мира, основанную на собственных наблюдениях, опытах, установлении взаимозависимостей, закономерностей и т. д. Экспериментальная работа вызывает у ребенка интерес к исследованию природы, развивает мыслительные операции (анализ, синтез, классификацию, обобщение и др.), стимулирует познавательную активность и любознательность ребенка, активизирует восприятие учебного материала по ознакомлению с природными явлениями, с основами математических знаний, с этическими правилами жизни в обществе и т. п.

Уже в младшем дошкольном возрасте, познавая окружающий мир, ребенок стремиться не только рассмотреть предмет, но и потрогать его руками, языком, понюхать, постучать им и т. п. Эксперимент, самостоятельно проводимый ребенком, позволяет ему создать модель естественно-научного явления и обобщить полученные действенным путем результаты, сопоставить их, классифицировать и сделать выводы о ценностной значимости физических явлений для человека и самого себя.

Ценность реального эксперимента в отличие от мысленного, заключается в том, что наглядно обнаруживаются скрытые от непосредственного наблюдения стороны объекта или явления действительности; развиваются способности ребенка к определению проблемы и самостоятельному выбору путей ее решения; создается субъективно новый продукт. Экспериментирование как специально организованная деятельность способствует становлению целостной картины мира ребенка дошкольного возраста и основ культурного познания им окружающего мира. Прослеживание и анализ особенностей «поведения» предметов в специально созданных условиях и составляют задачу экспериментальной деятельности. Для обозначения подобной формы деятельности применительно к детям используется введенное Н. Н. Поддьяковым понятие «детское экспериментирование». Такое экспериментирование является ведущим функциональным механизмом творчества ребенка.

Предметный мир, окружающие ребенка вещи и игрушки имеют особое значение в развитии дошкольников. Именно в предметной деятельности возникает познавательная активность, складываются первые эмоциональные предпочтения. Задача педагога – помочь ребенку войти в предметный мир, воспитать ценностное отношение к предметному миру.

Исследования по дошкольной педагогике (В. И. Логинова, Г. Н. Бавыкина, Н. А. Мишарина и др.) показали, что педагогическим условием воспитания у дошкольников ценностного отношения к предметному миру является системный характер представлений о предмете.

Основными компонентами, обеспечивающими системный характер представлений дошкольника о предмете являются:

Строение предмета;

Строение и назначение частей предмета;

Материал (качества и свойства).

Предметы сделаны из разных материалов. Каждый материал, будь то ткань или бумага, песок, глина, пластмасса, металл, дерево, имеет свои свойства и качества. Материал может быть твердым, мягким, гладким, холодным, гибким, прозрачным, хрупким, прочным… Почему из этого материала сделан предмет, может ли он быть сделан из другого материала? Комплекс видовых признаков – назначение предмета, его строение и материал – помогает ребенку оперировать видовыми понятиями.

При знакомстве с различными материалами существует большое поле для организации экспериментальной деятельности дошкольника. В соответствии с программой «Детство» ребенок знакомится с различными материалами и их свойствами: ткань, бумага, картон, железо, стекло, пластмасса, дерево, глина, песок и другие. Как правило, материал, из которого сделан предмет, имеет целый ряд признаков. Он может быть легким, прозрачным блестящим, хрупким, гладким. Поэтому важно научить ребенка вычленять каждое качество или свойство из комплекса свойств и качеств предмета.

Организация экспериментальной деятельности по ознакомлению с материалами и свойствами предметов.

Как и любая деятельность, экспериментирование состоит из структурных элементов, таких как цель, идеал, предвидение способов его достижения, контроль процесса деятельности, включающий взаимодействие интеллектуальных, волевых и эмоциональных проявлений личности. Каждый из этих элементов является необходимым и целостным компонентом экспериментального процесса, постоянно проникающим в другие. В связи с этим, можно заключить, что экспериментирование стимулирует интеллектуальную активность и любознательность ребенка.

Развитие способности детей экспериментировать представляет собой определенную систему, в которую включены демонстрационные опыты, осуществляемые педагогом в специально организованных видах деятельности, наблюдения, лабораторные работы, выполняемые детьми самостоятельно в пространственно-предметной среде группы. Каждое фундаментальное естественно-научное понятие, с которым мы предполагаем знакомить детей, экспериментально обосновывается и проясняется для ребенка в процессе наблюдений, мысленного и реального экспериментирования. В процессе экспериментирования ребенку необходимо ответить не только на вопрос как я это делаю, но и на вопросы почему я это делаю именно так, а не иначе, зачем я это делаю, что хочу узнать, что получить в результате.

Цель экспериментально-исследовательской деятельности в процессе ознакомления с материалами и свойствами:

Помочь ребенку освоить видовые понятия на основе выделения основных признаков.

Задачи:

1. Формировать у детей дошкольного возраста систему видовых понятий.

2. Развивать собственный познавательный опыт в обобщенном виде с помощью наглядных средств (эталонов, символов, условных заместителей, моделей).

3. Расширять перспективы развития поисково-познавательной деятельности детей путем включения их в мыслительные, моделирующие и преобразующие действия.

4. Поддерживать у детей инициативу, сообразительность, пытливость, критичность, самостоятельность.

5. Развивать эмоционально-ценностное отношение к окружающему миру.

6. Развивать внимание, зрительную и слуховую чувствительность.

7. Расширять словарный запас и обогащать речевое общение на основе культурных норм.

Содержание экспериментально-опытной работы с детьми:

1. Создание условий для развития у детей интереса к явлениям и свойствам окружающих предметов;

2. Знакомство с различными свойствами веществ (цвет, твердость, мягкость, прозрачность, прочность, упругость и др.)

3. Поощрение познавательной активности и самостоятельности детей.

4. Организация наблюдений за свойствами предметов, близких к опыту детей.

5. Развитие любознательности и поддержка инициативы детей.

Создание условий для экспериментальной деятельности детей представляется как задание определенной программы действий ребенка по поиску способов по достижению цели. При этом постановка проблемы и способ решения проблемы предлагается ребенком и включает прогнозы, оценки и последовательность действий. Познавательная деятельность, принимая экспериментально - исследовательский характер, предлагает создание определенных алгоритмов, которые являются для детей ориентирами для коррекции собственной деятельности.

Для экспериментально-исследовательской деятельности в процессе ознакомления со свойствами материалов предлагаем экспериментальные карты, в которые заносятся результаты экспериментов. Эти карты помогут ребенку полнее познать материал.

Карты предлагаются 3 видов:

1. Карты для детей младшего дошкольного возраста – целенаправленное знакомство с материалом на основе сенсорных обследований (гладкость – шероховатость; твердость – мягкость; прозрачность – непрозрачность; промокаемость – удерживание воды; прочность - хрупкость и т. д.)

2. Карты для детей среднего дошкольного возраста – вычленение каждого качества или свойства, отделение его от сопутствующих при сопоставлении его с противоположным качеством.

3. Карты для детей старшего дошкольного возраста – детальное сравнение материалов на основе сопоставления различия и общности.

(смотри приложение 1)

Формы организации экспериментальной деятельности.

Для экспериментально-исследовательской деятельности в процессе ознакомления со свойствами материалов (по программе «Детство) предлагаем следующие модели организации детской деятельности:

1. Для детей младшего дошкольного возраста учебно-игровая модель: познавательная деятельность приобретает игровую модель за счет постановки учебной цели в художественном образе.

Задачи: Обеспечение интенсивного усвоения понятий, отражающих природные закономерности посредством наблюдений, рассматривания схем и создания мотивации к учению благодаря самостоятельному овладению способами познавательной деятельности, развитию эмоциональной и интеллектуальной рефлексии.

1. Обучение на конкретной ситуации.

2. Имитационное моделирование.

3. Состязательность и соревнование.

4. Анализ проблемы.

5. Выявление трудностей.

6. Разложение проблемы на частности.

7. Оценка решений, поиск логически обоснованного решения.

Принципы:

Ролевое самовыражение.

Самостоятельность в преодолении проблем.

Познавательная деятельность приобретает игровую модель за счет постановки учебной цели в художественном образе. Тематика каждого занятия имеет игровую конструкцию и игровой сюжет. Деятельность завершается обсуждением процесса (последовательность действий, позволивших достичь результата), игровых и реальных взаимодействий детей и педагога, обеспечивших эмоциональный комфорт участникам деятельности. Данное обсуждение включает составление схемы проведенного эксперимента.

Методы и приемы:

Экспериментальные игры

Действия с материалами

Рассматривание схем к опытам, таблиц.

Использование энциклопедических данных.

Драматизация

2. Для детей среднего дошкольного возраста: коммуникативно-диалоговая модель: развитие у детей самостоятельности и активной позиции в процессе познания законов природы на основе включения в разнообразные по содержанию диалоги и коммуникации с субъектом и объектом.

Задачи: Развитие способности к самостоятельному поиску новых знаний и самоопределению в позиции и точках зрения на изучаемые объекты, а также развитие способностей к раскодировке знаков и символов, содержащихся в схематическом изображении проводимых опытов и экспериментов, развитие основ критического и рефлексивного мышления, дискуссионной культуры детей.

1. Метод обсуждения.

2. Ряд коммуникативных процедур.

3. Распределение ролей.

4. Ознакомление в коммуникации со сведениями.

5. Сосуществование несовпадающих линий.

6. Возможность критиковать.

7. Побуждение к поиску решения.

8. Поощрение разных подходов к одному и тому же.

9. Решение задач конкретно-содержательного плана: осознание противоречий, актуализация знаний, творческое переосмысление.

10. Решение задач организационного взаимодействия: распределение ролей, выполнение коллективных задач, согласованность в обсуждении проблем, соблюдение правил и процедур.

11. Педагог предоставляет возможность: подготовиться к коммуникации, пересмотреть цели, выбирать решения, вырабатывать правила, обмениваться целями, выявлять разногласия, актуализировать сведения, дать выход чувствам, распределять функции, использовать разнообразные средства, дать время для размышления, менять ход коммуникации, уточнять, побуждать.

Принципы:

«Диалог культур»; самоорганизации; упорядочивания.

Педагог в начале занятия предоставляет детям информацию, дети самостоятельно договариваются, как, используя предложенные педагогом карты экспериментальной деятельности получить результат. Выбирая различные варианты, они совместно с педагогом определяют проблему, обсуждают ее, анализируют положительные или отрицательные результаты. Дети самостоятельно осуществляют поиск оптимального решения проблемы, делают вывод. Проверяя решение, вступают в коммуникацию с педагогом, доказывая правильность сделанного выбора, позволившего получить наилучший результат.

В данной модели познавательной деятельности конечный результат не обсуждается с детьми. Это происходит в процессе его достижения в форме дискуссий и обмена мнениями о выполняемых детьми действиях, которые и обеспечат достижение результата.

Методы и приемы:

Проблемные ситуации

Метод выбора (наблюдение, беседа, эксперимент, описание и др.)

Вопросы, стимулирующие самооценку и самоконтроль ребенка.

Организация поисково-познавательной деятельности ребенка предполагает наличие коммуникативных компонентов, которые характеризуют направленность общения на получение определенных результатов, на согласование исполнительских операций, на разделенность действий и их интеграцию и т. п. Обмен информацией является важнейшей характеристикой поисково-познавательной деятельности, которая оценивается по критерию полезности – «говорить по делу», носит регламентированный характер, должна по возможности исключать неоднозначную интерпретацию информации.

В процессе коммуникаций и информационного обмена большое значение приобретает соотношение речи и мышления, так как ребенок усваивает способ познания и использования культурных речевых эталонов в деловом общении. Педагогу следует контролировать, насколько аргументировано ребенок выражает свои мысли в процессе коммуникаций, содержащих речевые эталоны, так как учебная деятельность предполагает переход от спонтанной речи к аргументированности. Аргументированность ставит ребенка в позицию выбора, переконструирования речевых средств и форм, которые позволят ему достичь, с одной стороны, поставленной цели, а с другой стороны, осуществить рефлексию собственных действий.

3. Для детей старшего дошкольного возраста: экспериментально-исследовательская модель – развитие способностей ребенка в процессе действий с исследуемыми материалами в «лабораторных условиях» как средство познания окружающего мира.

Задачи: Развитие мыслительных процессов, мыслительных операций, освоение методов познания (учебных, поисковых), причинно-следственных связей и отношений.

1. Вводить понятие.

2. Приводить контрастные примеры.

3. Выделять значимые признаки.

4. Типы заданий: формирование понятий, интерпретация и обобщение, использование понятий.

5. Уровни знаний: понятия, идеи, факты.

6. Привлекает собственный опыт.

7. Организация совместной деятельности детей.

8. Учитывать шаги-этапы: сбор данных (фактов), характеристика объектов, связь с явлениями, условия состояния объекта, свойства, экспериментирование, объяснение, анализ исследования.

9. От неизвестного к известному.

10. Создание новых представлений.

Принципы:

Постановка проблемы; поиск фактов; поиск идей; поиск решений; поиск признаков; самостоятельность; альтернативность точек зрения; столкновение идей; самостоятельное планирование; связь правила и примера; альтернативные интерпретации.

Педагог определяет проблему, объект, правила. Дети учатся формулировать понятие, анализировать проблему. Самостоятельно с помощью предложенных педагогом инструментов дети ищут разнообразные способы решения поставленной проблемы, ориентируясь на правила.

Постановку проблемы или ее поиск осуществляют дети самостоятельно на основе приведенной упрощенной схемы или наглядной картинки исследуемого свойства, самостоятельно описывают проведение опыта, выдвигают гипотетические предложения о путях проведения эксперимента, самостоятельно апробируют средства и способы, направленные на разрешение ситуации, а также самостоятельно применяют полученные результаты в жизни. От ребенка требуется проявить способность к аргументации необходимости принятого им решения о путях достижения результата и применения его в жизнедеятельности.

Методы и приемы:

1. Вопросы педагога, побуждающие детей к постановке проблемы.

2. Схематичное моделирование опыта (создание схемы проведения).

3. Вопросы, помогающие прояснить ситуацию и понять смысл эксперимента, его содержание и природную закономерность.

4. Метод стимулирующий детей к коммуникации.

5. Метод «первой пробы» применения результатов собственной исследовательской деятельности, суть которой состоит в определении ребенком личностно-целостного смысла совершенных им действий.

Более полное познание окружающего доставляют человеку восприятия, отражающие предметы и явления в совокупности их свойств. Чувственное познание внешнего мира является основой и источником мыслительной деятельности и речи детей. Под влиянием речи изменяется характер восприятий: ребёнок постепенно начинает переходить от предметно – чувственного восприятия к смысловому. Изменяются и процессы памяти.

Вследствие установления всё более прочных связей между первой и второй сигнальными системами перестраивается всё поведение ребёнка: его игра, взаимоотношения с детьми, отношение к окружающему становится всё более осмысленным и взаимосвязанным. Уже к третьему году жизни речь постепенно становится средством общения не только с взрослыми, но и с детьми.

Экспериментирование также как и игра являются естественными путями познания в дошкольном возрасте. Ребёнку в данном возрасте важно ощутить на себе непосредственное воздействие на себе этих объектов или явлений; посмотреть, послушать, потрогать, понюхать, попробовать на вкус, поэкспериментировать.

Организация предметно - развивающей среды по развитию поисково-познавательной деятельности.

Развивающая среда есть комфортная, естественная, уютная обстановка, насыщенная разнообразными сенсорными раздражителями и игровыми материалами. Ребёнок вступает со средой в непосредственный контакт взаимодействия, она даёт возможность «расцвести» чувствам, рукам и духу в собственной деятельности и движении. Специально организованная предметно – развивающая среда, дающая возможность для активной и творческой деятельности, воздействует на все органы чувств, на сознание и подсознание. Специально – организованная среда – это не только определённым образом подобранный материал, но и сам принцип организации предметно – пространственного мира, подразумевающий абсолютную безопасность и защищённость ребёнка: всё находится на своём месте, запрещает делать то, что угрожает ребёнку или мешает ему.

Для того чтобы дети могли ставить опыты и эксперименты, в группе должна быть организована соответствующая предметно - развивающая среда. Такая среда строится на принципах, разработанных В. А. Петровским. Это:

· принцип дистанции, определенной позиции при взаимодействии ребенка с различными материалами, помогающий обнаружить их свойства и качества;

· принцип активности, самостоятельности, предполагающий обнаружение свойств и качеств материалов при взаимодействии ребенка с находящимися в группе объектами;

· принцип эмоциогенности, индивидуальной комфортности позволяет ребенку почувствовать свою внутреннюю, глубинную связь с природой, которая выполняет функцию создания внутреннего покоя человека, осознание своей гармоничности в мире природы.

Педагог создает условия в группе для того, чтобы ребенок мог самостоятельно, в процессе экспериментирования осуществлять интеграцию известных ему способов, или конструировать новые способы, или строить новый тип делового партнерства со сверстниками.

В группе должна быть зона экспериментирования с набором различных материалов и предметов, сделанных из этих материалов. Интеллектуальная зона с набором дидактических и развивающих игр и энциклопедической литературой, с набором знаков, символов, схем.

Соблюдение правил безопасности при организации экспериментальной деятельности с детьми дошкольного возраста.

Природа заранее «знала»: если в ребенка вложить инстинкт самосохранения изначально, экспериментировать он не станет - будет бояться. К идее самосохранения человек приходит через сознание. Конечно, дети уже многократно сталкивались с болевыми ощущениями, возникающими в процессе собственной деятельности, но пройдет еще много лет, прежде чем они не только запомнят разнообразные случившиеся с ними неприятности, но и начнут мысленно моделировать свои действия, предвидеть их последствия и активно избегать тех действий, которые могут иметь нежелательные последствия. Только тогда они начнут соблюдать правила безопасности. А пока взрослые должны оберегать детей в различных жизненных ситуациях. Но нельзя впадать в другую крайность: перестраховываясь, лишать ребенка возможности саморазвития.

В обыденной жизни дети часто сами экспериментируют с различными веществами, стремясь узнать что-то новое. Они разбирают игрушки, наблюдают за падающими в воду предметами, пробуют языком в сильный мороз металлические предметы и т. п. Но опасность такой «самодеятельности» заключается в том, что дошкольник еще не знаком с правилами элементарной безопасности. Эксперимент же специально организуемый педагогом, безопасен для ребенка и в то же время знакомит его с различными свойствами окружающих предметов, с законами жизни природы и необходимостью их учета в собственной жизнедеятельности. Первоначально дети учатся экспериментировать в специально организованных видах деятельности под руководством педагога, затем необходимые материалы и оборудование для проведения опыта вносятся в пространственно-предметную среду группы для самостоятельного воспроизведения ребенком, если это безопасно для его здоровья. В связи с этим в дошкольном образовательном учреждении эксперимент отвечает следующим условия:

Максимальная простота конструкции приборов и правил обращения с ними;

Безотказность действия приборов и однозначность получаемых результатов;

Показ только существенных сторон явления или процесса;

Отчетливая видимость изучаемого явления;

Возможность участия ребенка в повторном показе эксперимента.

Ребенок должен четко знать правила безопасности при использовании инструментов и оборудования, необходимых в ходе проведения эксперимента. (например6 использование ножа, ножниц для определения прочности материала)

Работа с родителями

Часто родители, оберегая своего ребенка, не осознавая значимости экспериментирования для развития детей, становления его личности, идут по самому простому пути: запрещают и наказывают. Этот подход к обучению лежит в основе авторитарной педагогики: взрослый всегда знает, как нужно делать правильно, и постоянно сообщает об этом ребенку. Он требует, чтобы ребенок поступал только так, и лишает его права на ошибку, не позволяет ему самому открывать истины. Задача воспитателей группы - донести до родителей, что детское экспериментирование представляет собой выражение мысли: позвольте детям реализовать заложенную в них программу саморазвития, возможность удовлетворять потребность познания эффективным и доступным для них способом – путем самостоятельного исследования мира.

1. Общая лекция об особенностях познавательной деятельности в процессе ознакомления с различными материалами ребёнка соответствующего возраста с рекомендациями по созданию развивающей среды дома.

2. Памятка для каждой семьи с кратким резюме содержания лекции.

3. Подбор соответствующего справочного материала и размещение его в родительском уголке.

4. Консультации по теме и индивидуальные консультации с учётом особенностей каждого ребёнка.

5. Семинар – практикум по организации исследовательской деятельности ребёнка дома.

Диагностика развития экспериментально-познавательной деятельности у детей дошкольного возраста.

Критерием результативности детского экспериментирования является не качество результата, а характеристики процесса, объективирующего интеллектуальную активность, познавательную культуру и ценностное отношение к реальному миру.

Для выяснения умений ребенка необходимо провести следующую диагностику:

Цель: Выявление умений ребенка провести исследование свойства материала на основе исследовательской карты.

Методика диагностики:

Предложить исследовательскую карту свойств материала (в соответствии с возрастом) и материал для исследования. Дать возможность ребенку провести исследование.

Как ты будешь определять свойство материала?

Какие свойства ты будешь определять?

Что у тебя получилось?

Как занести полученный результат в исследовательскую карту?

Уровни развития:

Низкий уровень: ребенок не принимает цель исследования, беспомощность в предвидении результатов эксперимента, не может провести эксперимент, не делает выводы, не интересуется экспериментальной деятельностью, играет.

Средний уровень: ребенок принимает цель исследования, в предвидении результатов частые ошибки, что говорит о недостаточности знаний, самостоятельно проводит исследование, выводы основываются на увиденном. Часто дети не могут выделить основной признак обобщения. Занимаются экспериментальной деятельностью с удовольствием.

Высокий уровень: ребенок принимает цель исследования, предвидит результат исследования, самостоятельно проводит исследовательскую деятельность, делает правильные выводы. Занимается экспериментальной деятельностью с удовольствием. Задает много вопросов. Пытается продолжить эксперимент с другими материалами.Приложение 1

Экспериментально-исследовательская деятельность в процессе ознакомления со свойствами материалов.

Материал

Младший дошкольный возраст

Средний дошкольный возраст

Старший дошкольный возраст

Определение качеств материала на основе сенсорного обследования образца (писчая бумага)

1. Определение качеств материала на основе сравнения бумаги и картона.

2. Определение качеств материала на основе сравнения бумаги и дерева.

3. Определение качеств материала на основе сравнения бумаги и ткани.

4. Определение качеств материала на основе сравнения бумаги и резины.

Определение качеств материала на основе сравнения бумаги разных сортов: писчая, альбомная, чертежная, обойная, вощеная.

Определение качеств материала на основе сенсорного обследования образца (картон для ручного труда)

1. Определение качеств материала на основе сравнения картона и дерева.

2. Определение качеств материала на основе сравнения картона и ткани.

3. Определение качеств материала на основе сравнения картона и резины.

4. Определение качеств материала на основе сравнения картона и стекла.

Определение качеств материала на основе сравнения картона разных сортов: для ручного труда, для упаковки (коробки), строительный картон.

Определение качеств материала на основе сенсорного обследования образца (кусок дерева)

1. Определение качеств материала на основе сравнения дерева и бумаги.

2. Определение качеств материала на основе сравнения дерева и картона.

Определение качеств материала на основе сравнения дерева и ткани.

Определение качеств материала на основе сравнения дерева и металла.

Определение качеств материала на основе сравнения разных пород дерева.

Определение качеств материала на основе сенсорного обследования образца (металлическая пластина)

Определение качеств материала на основе сравнения металла и бумаги.

Определение качеств материала на основе сравнения металла и резины.

Определение качеств материала на основе сравнения металла и ткани.

Определение качеств материала на основе сравнения металла и стекла.

Определение качеств материала на основе сравнения разных видов металлов: железо, медь, алюминий.

Керамика

Определение качеств материала на основе сенсорного обследования образца (керамическая пластина)

Определение качеств материала на основе сравнения керамики и картона.

Определение качеств материала на основе сравнения керамики и дерева.

Определение качеств материала на основе сравнения керамики и металла.

Определение качеств материала на основе сравнения керамики и резины.

Определение качеств материала на основе сравнения различных видов керамики: фаянс, фарфор, глиняная керамика.

Определение качеств материала на основе сенсорного обследования образца (кусок велосипедной камеры)

Определение качеств материала на основе сравнения резины и дерева.

Определение качеств материала на основе сравнения резины и ткани.

Определение качеств материала на основе сравнения металла.

Определение качеств материала на основе сравнения резины и стекла

Определение качеств материала на основе сравнения разных сортов резины.

Определение качеств материала на основе сенсорного обследования образца (кусок ситца)

Определение качеств материала на основе сравнения ткани и бумаги.

Определение качеств материала на основе сравнения ткани и металла.

Определение качеств материала на основе сравнения ткани и кожи.

Определение качеств материала на основе сравнения ткани и стекла.

Определение качеств материала на основе сравнения различных видов ткани: ситец, шелк, сукно, лен, драп.

Определение качеств материала на основе сенсорного обследования образца (кусок кожи)

Определение качеств материала на основе сравнения кожи и бумаги.

Определение качеств материала на основе сравнения кожи и ткани.

Определение качеств материала на основе сравнения кожи и дерева.

Определение качеств материала на основе сравнения кожи и металла.

Определение качеств материала на основе сравнения разных видов кожи.

Определение качеств материала на основе сенсорного обследования образца (стеклянная пластина)

Определение качеств материала на основе сравнения стекла и картона.

Определение качеств материала на основе сравнения стекла и дерева.

Определение качеств материала на основе сравнения стекла и резины.

Определение качеств материала на основе сравнения стекла и металла.

Определение качеств материала на основе сравнения разных сортов стекла: оконное, цветное, хрусталь.

Исследовательская

Исследовательская карта №2 (средний дошкольный возраст)


Приложение 3

2 младшая группа.

Цель: Помочь детям выделить основные качества и качества стекла: твердое, прозрачное, не намокает, бьется.

Задачи:

1. Помочь детям выделить основные качества и качества стекла: твердое, прозрачное, не намокает, бьется.

2. Продолжать учить заполнять экспериментальные карты.

3. Закрепить знание схематических изображений отдельных свойств предмета.

4. Развивать умение производить обследовательские действия.

5. Воспитывать желание помогать ближнему.

Речевые задачи:

  1. Закрепить в речи слова: твердое, прозрачное, хрупкое.
  2. Продолжать учить отвечать распространенными предложениями.

Предшествующая работа: проведение экспериментов по выяснению качеств стекла, бумаги, дерева; заполнение экспериментальных карт.

Ход занятия:

Воспитатель: Ребята, посмотрите, кто к нам сегодня пришел в гости: это обезьянка Анфиса. Здравствуй Анфиса. Почему ты такая грустная?

Анфиса: Я построила себе новый домик. Он очень красивый и уютный, но жить в нем не могу, потому что в нем очень холодно.

Воспитатель: Почему у тебя в домике холодно, Анфиса?

Анфиса: Потому что в моем домике нет окон, просто в стенах отверстия. В дом задувает ветер, и залетают снежинки.

Воспитатель: Что же нам делать, ребята?

Дети: Надо помочь Анфисе.

Воспитатель: А как мы модем помочь Анфисе?

Дети: Надо сделать ей окна.

Воспитатель: А из чего мы можем сделать окна?

Дети предлагают материалы, из которых можно сделать окна?

Воспитатель: А из какого материала лучше всего получатся окна? Сначала давайте выясним, зачем нужны окна в домике? Может можно обойтись без них?

Дети: Окна нужны, чтобы в доме было тепло и светло.

Воспитатель: Какой же материал больше всего подойдет? Что нам может помочь в выяснении этого вопроса?

Дети: Экспериментальные карты.

Воспитатель: Давайте возьмем экспериментальные карты и попробуем выбрать нужный материал. Вот этот материал, наверное, может подойти. Как вы думаете? (бумага)

Дети: Нет, бумага не подойдет.

Воспитатель: Почему?

Дети: бумага размокает в воде, если пойдет дождь, то она размокнет. Еще бумага не прозрачная, в домике будет темно.

Воспитатель: А дерево подойдет?

Дети: Нет, не подойдет. Оно тоже не прозрачное, темно будет.

Анфиса: Наверно, я так и не смогу жить в своем домике. Не будет у меня окон.

Воспитатель: Подожди, Анфиса, наши детки выберут материал для твоих окон. Какой же материал подойдет для окон?

Дети: Стекло.

Воспитатель: Почему?

Дети: Стекло твердое, не намокает, прозрачное, значит, в домике будет светло.

Анфиса: Стекло? Какое это стекло? Я не знаю что такое стекло.

Воспитатель: Дети вы можете показать Анфисе стекло?

На столе лежат различные материалы. Дети выбирают среди них стеклянные пластины и показывают их Анфисе.

Анфиса: А как вы узнали, что это стекло?

Дети: Оно гладкое (гладят), твердое (проводят по стеклу стержнем), прозрачное (смотрят сквозь него).

Анфиса: (грустно) Я все это не запомню.

Воспитатель: Мы дадим тебе экспериментальную карту, и ты все можешь на ней увидеть. Дети, кто может дать Анфисе карту стекла?

Дети дают обезьянке карту.

Анфиса: Что-то здесь нарисовано, я не пойму.

Воспитатель: Кто может объяснить Анфисе, что здесь нарисовано?

Дети: этот значок показывает, что стекло твердое, этот – прозрачное, этот – не намокает.

Анфиса: Спасибо вам, ребятки. Я сейчас же побегу в магазин и куплю стекло для своих окон. Потом я приглашу вас на праздник в свой домик. До свидания (убегает).

Воспитатель: Ребята, как вы думаете, мы помогли Анфисе? Как мы ей помогали? Это было трудно? Хотите ли вы еще кому-нибудь помочь? Мы обязательно будем помогать всем, кто обратиться к нам за помощью.

Приложение 4

Занятие по ознакомлению с предметным миром.

Старшая группа.

Цель: Помочь детям выделить основные свойства сходных материалов.

Задачи:

  1. Помочь детям выделить основные свойства сходных материалов: бумаги.
  2. Продолжать учить выделять свойства материалов путем обследования.
  3. Закрепить умение заполнять экспериментальную карту.
  4. Развивать умение выявлять свойства материалов экспериментальным путем.
  5. Воспитывать умение работать в микрогруппе.

Речевые задачи:

  1. Учить использовать в речи конструкции предложений – доказательств: потому что…, из-за того что…
  2. Продолжать учить отвечать, используя в речи сложносочиненные и сложноподчиненные предложения.

Предшествующая работа: опыты с бумагой.

Ход занятия:

Воспитатель: Ребята, к нам обратились малыши из младшей группы. Они просят помочь им и научить делать лодочки из бумаги, чтобы пускать их на улице в ручеек. Что нам делать?

Дети: Поможем малышам.

Воспитатель: Как мы будем им помогать?

Дети: Мы научим малышей делать лодочки.

Воспитатель: Вы знаете, как важно выбрать материал для изготовления какого-нибудь предмета. Нам очень важно выбрать бумагу, из которой малыши будут делать лодочки. При выборе материала учтите, что бумага должна быть достаточно мягкой, потому что у малышей слабые пальцы и достаточно прочной, чтобы лодочка сразу не испортилась и малыши могли с ней поиграть. У нас есть несколько видов бумаги: салфетки, альбомные листы, ватман, обои. Я предлагаю вам экспериментальным путем выяснить, какой вид бумаги лучше всего подойдет. Для работы лучше всего разбиться на команды. (Дети делятся на команды по 3-4 человека.) Что может помочь нам в работе?

Дети: экспериментальная карта.

Воспитатель: Заполните экспериментальную карту, и мы выясним, чем похожи и чем отличаются разные виды бумаги.

Воспитатель: Какое оборудование нужно вам для работы? (Дети выбирают нужное оборудование).

Дети проводят несколько опытов для выяснения различных свойств бумаги и заносят данные в экспериментальную карту.

Воспитатель: Какую же бумагу лучше посоветовать малышам для поделок?

Дети: Мы считаем, что лучше всего подойдет альбомный лист.

Воспитатель: Почему?

Дети: Салфетки слишком мягкие, они плохо сгибаются, не держат форму; ватман слишком твердый, плохо сгибается, обои слишком рыхлые, хорошо впитывают воду. Размокают все виды бумаги. Но салфетки размокают сразу, обои тоже размокают быстро. Ватман и альбомный лист размокают дольше в воде. Поэтому из перечисленных условий можно выбрать альбомный лист. Он остаточно долго не размокает, хорошо складывается и гнется. Малышам удобно будет строить, и играть с лодочками.

Воспитатель: Сейчас я предлагаю вам прибрать свое рабочее место, выбрать из предложенных материалов альбомные листы и пойти к малышам, учить их делать лодочки.

Приложение 5

Проект «Мир металла»

Старший дошкольный возраст.

Цель: Научить детей узнавать предметы из металла, определять его качественные характеристики, свойства, дать информацию об использовании человеком.

Оборудование и материалы: металлические предметы, магниты, емкость с водой, музыкальные инструменты, бумага, книги, иллюстрации, экспериментальные карты.

Проект реализуется через разные виды деятельности детей.

  • Игра и беседа

Воспитатель предлагает детям поиграть в игру «Найди нужный предмет» нужно выбрать из имеющихся предметов металлические предметы.

Воспитатель: почему вы выбрали именно этот предмет?

Дети объясняют, почему именно этот предмет они считают металлическим.

Затем сообща обсуждается, как люди добывают металл, какие металлы знакомы ребятам. Дети рассматривают различные предметы, изготовленные из различных металлов.

  • Экспериментирование

Опыт 1. Опустить гайку в воду. Она тонет, значит, тяжелее воды.

Опыт 2. Положить гайку на батарею Она нагревается. Металл теплопроводный.

Опыт 3. Двигать скрепку при помощи магнита. Металл обладает свойством притягиваться магнитом.

Опыт 4. Опускаем скрепку на дно емкости с водой и выясняем, мешает ли вода магниту работать.

Опыт 5. На подносе лежат различные предметы, и дети с помощью магнита выясняют какие из них железные.

Вывод: железо притягивается магнитом. Данные заносятся в экспериментальную карту.

  • Театр

При помощи настольного магнитного театра дети разыгрывают сказку Ш. Перро «Красная шапочка».

  • Сказки

Вместе с детьми обсуждается, в каких сказках встречаются предметы или сказочные персонажи из металла (Железный дровосек, меч – кладенец, золотое яичко, и т. д.)

  • Игра «Чудесный мешочек»

Педагог загадывает загадки о металлических предметах, которые лежат в мешочке. Если ребенок угадал правильно, предмет достается из мешочка и дети объясняют, зачем он нужен.

  • Выставка

По просьбе воспитателя в группе родители организуют выставку металлических предметов. Выставка действует в течении длительного времени, дети играют с предметами, воспитатель рассказывает из чего они сделаны, как человек использует металл, для чего собирают металлолом.

  • Детская деятельность

Выставка рисунков «Как металл помогает человеку».

Использованная литература:

1. Программа «Детство» Т. Н. Бабаева, З. А. Михайлова и др. «Детство – Пресс» Санкт Петербург 2006 г.

2. «Методические советы к программе «Детство» под ред. Т. Н. Бабаевой, З. А. Михайловой «Детство – Пресс» Санкт Петербург 2001 г.

3. М. В. Крулехт «Дошкольник и рукотворный мир» «Детство – Пресс» Санкт Петербург 2005 г.

4. План – программа образовательно-воспитательной работы в детском саду. «Детство – Пресс» Санкт Петербург 2006 г.

5. И. Э. Куликовская, Н. Н. Совгир Детское экспериментирование Л. С. Ковенько Секрет природы – это так интересно Москва 2001г.

6. М. М. Омега Занимательное природоведение Москва 2003г.

7. Л. И. Иванова Экологические наблюдения и эксперименты в детском саду.

8. П. П. Молодова Игровые экологические занятия с детьми. «Детство – Пресс» Санкт Петербург 2001 г.

9. Г. П. Тугушева, А. Е Чистякова Экспериментальная деятельность детей среднего и старшего дошкольного возраста «Детство – Пресс» Санкт Петербург 2008 г.

10. Экологические проекты в ДОУ и начальной школе. Составитель Т. В. Хабарова Сыктывкар 2004 г.

    Введение

Уважаемые студенты мы приступаем к изучению курса «Общее материаловедение». Лекции, которые будут прочитаны в течение данного семестра, помогут Вам разобраться в физико-химической сущности строения и свойств различных материалов. Вы узнаете, почему природные и искусственно созданные материалы имеют различные теплопровод­ность, механические и эксплуатационные свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изме­нять. Одно­временно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элемен­тов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отмечу, что строение атомов химиче­ских элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на по­нимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристики.

Однако более важной, чем изучение отдельных проблем, изло­женных в лекциях, является предоставляемая вам возможность объединить основные положения физики, химии и прикладных научных направлений (теплофизи­ки, механики) для комплексного понимания взаимодействия веществ и их свойств.

В лекциях главное внимание уделено фундаментальным основам материалове­дения в связи с тем, что современное материаловедение направлено на получение ма­териалов с заданными характеристиками и служит базой для нау­коемких технологий XXI века.

Материалом называется вещество, обладающее необходимым комплексом свойств, для выполнения заданной функции отдельно или в совокупности с другими веществами.

Современное материаловедение полностью сложилось как нау­ка во второй половине XX века, что было связано с быстрым возрастанием роли материалов в развитии техники, тех­нологии и строительства. Создание принципиально новых материалов с заданными свойствами, а на их основе сложнейших конструкций по­зволило человечеству достичь за короткое время небывалых успе­хов в атомной и космической технике, электронике, информацион­ных технологиях, строительстве и т.д. Можно считать, что материаловедение - это раздел научного знания, посвященный свойствам веществ и их направленному изменению с целью получения материалов с заранее заданными рабочими характеристиками. Он опирается на фунда­ментальную базу всех разделов физики, химии, механики и смежных дисциплин и включает теоретические основы современных нау­коемких технологий получения, обработки и применения материа­лов. Основу материаловедения составляет знание о процессах, про­текающих в материалах под воздействием различных факторов, об их влиянии на комплекс свойств материала, о способах контроля и управления ими. Поэтому материаловедение и технология ма­териалов - взаимосвязанные разделы знания.

Курс материаловедения и технологии строительных мате­риалов служит цели познания природы и свойств ма­териалов, методов получения материалов с заданными ха­рактеристиками для наиболее эффективного использования в строительстве.

Основные задачи изучения курса:

Дать понимание физико-химической сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях производства и эксплуатации, и их влияния на свойства материалов;

Установить зависимость между химическим составом, строением и свойствами материалов;

Изучить теоретические основы и практику реализации раз­личных способов получения и обработки материалов, обеспечи­вающих высокую надежность и долговечность строительных конструкций;

Дать знания об основных группах неме­таллических материалов, их свойствах и областях применения.

В лекциях раскрываются:

Основы взаимодействия атомов и молекул, позволяющие в дальнейшем объяснить влияние на свойства материала его химиче­ского состава и процессов направленной обработки;

Строение твердого тела, дефекты кристаллической структуры и их роль в формировании свойств материалов;

Явления переноса тепла, массы и заряда, составляющие суть любого технологического процесса;

Теоретические основы получения аморфных структур мате­риалов;

Элементы механики упругой и пластической деформации и разрушения материала, лежащие в основе формирования прочности и надежности современных строительных материалов и конструкций, а также методы их испытаний;

Итак, задача современного материаловедения - получение материалов с заранее заданными свойства­ми. Свойства материалов определяются химическим составом и структурой, которые являются результатом получения материала и его дальнейшей обработки. Для разработки материалов и техноло­гий необходимо знание физических и химических явлений и процес­сов, протекающих в материале на различных стадиях его получения, обработки и эксплуатации, их предсказание, описание и управление ими. Таким образом, знание теории необходимо для создания управ­ляемых технологических процессов, результатом которых будет ма­териал с четко определенными значениями рабочих свойств.

Физико-химические свойства вещества определяются элек­тронным строением его атомов. Взаимодействия атомов связаны, в первую очередь, с взаимодействием их электронных оболочек. По­этому при разработке материалов и процессов их получения необ­ходимо четко представлять, как различные химические элементы отдают и принимают электроны, как изменение электронного со­стояния влияет на свойства элементов.

Давайте вспомним электронное строение атома .

Электронное строение атома

Около, двух с половиной тысяч лет древнегреческий философ Демокрит высказал мысль о том, что все окружающие нас тела состоят из мельчайших невидимых и неделимых частиц - атомов.

Из атомов, как из своеобразных кирпичиков собираются молекулы: из одинаковых атомов - молекулы простых, веществ, из атомов различного вида -молекулы сложных веществ.

Уже в конце девятнадцатого века наукой установлено, что атомы - частицы далеко не "неделимые", как представляла древняя философия, а, в свою очередь, состоят из ещё более мелких и, если так можно выразиться, ещё более простых частиц. В настоящее время с большей или меньшей достоверностью доказано существование уже около трех сотен элементарных частиц, входящих в состав атомов.

Для изучения химических превращений в большинстве случаев нам достаточно указать три частицы, входящие в атом: протон, электрон и нейтрон.

Протон представляет собой частицу массой условно принятой за единицу (1/12 массы атома углерода) и единичным положительным зарядом. Масса протона – 1,67252 х 10 -27 кг

Электрон - частица с практически нулевой массой (в 1836 раз меньшей, чем у протона) и единичным отрицательным зарядом. Масса электрона – 9,1091х10 -31 кг.

Нейтрон, представляет собой частицу с массой практически равной массе протона, но не имеющую заряда (нейтрален). Масса нейтрона – 1,67474 х 10 -27 кг.

Современная наука представляет атом, устроенным приблизительно, также как утроена наша солнечная система: в центре атома находится ядро (солнце), вокруг которого на относительно большом расстоянии вращаются электроны (как планеты вокруг солнца). Эта "планетарная" модель атома, предложенная в 1911 году Эрнестом Резерфордом и в 1913 году уточнённая постулатами Бора, сохранила своё значение до настоящего времени.

В ядре, состоящим из протонов и нейтронов и занимающем очень малую часть объема атома, сосредоточена основная масса атома (масса электронов в химических расчётах атомных и молекулярных масс обычно не учитывается).

Число протонов в ядре определяет вид атома. Всего сейчас открыто более ста видов атомов, которые и представлены в Таблице элементов под номерами, соответствующими числу протонов в ядре.

Простейший атом содержит в ядре всего один протон: это атом водорода. Более сложный атом гелия имеет в ядре уже два протона, третий (литий) - три и т.д. Определённый вид атома называется элементом.

2. Строение и свойства отделочных материалов

Внутреннее строение матерпалов

В зависимости от агрегатного состояния и устойчивости твердые вещества могут иметь строго упорядоченное строение – кристаллическое, или неупорядоченное, хаотическое строение – аморфное.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют характер кристаллической решетки: атомный с ковалентными связями, молекулярный с ван-дер-ваальсовыми и водородными связями, ионный с ионными связями, металлический с металлическими связями.

Атомная решетка состоит из нейтральных атомов, связанных между собой ковалентными связями. Вещества с ковалентными связями отличаются высокой твердостью, тугоплавкостью, нерастворимостью в воде и в большинстве других растворителях. Примером атомных решеток являются алмаз и графит. Энергия ковалентных связей составляет от 600 до 1000 кДж/моль

Молекулярная решетка построена их молекул (I 2 , Cl 2 , CO 2 и т.д.), связанных друг с другом межмолекулярными или водородными связями. Межмолекулярные связи имеют небольшую величину энергии, не более 10кДж/моль; несколько большую величину имеют водородные связи (20-80 кДж/моль), поэтому вещества с молекулярной решеткой имеют невысокую прочность, низкую температуру плавления, высокую летучесть. Такие вещества не проводят ток. К веществам с молекулярной решеткой относятся органические материалы, благородные газы, некоторые неорганические вещества.

Ионная решетка образуется атомами, сильно отличающимися по электроотрицательности. Она характерна для соединений щелочных и щелочноземельных металлов с галогенами. Ионные кристаллы могут состоять и из многоатомных ионов (например, фосфаты, сульфаты и пр.). В такой решетке каждый ион окружен определенным числом его противоионов. Например, в кристаллической решетке NаCl каждый ион натрия окружен шестью ионами хлора, а каждый ион хлора – шестью ионами натрия. Вследствие ненаправленности и ненасыщенности ионной связи кристалл можно рассматривать как гигантскую молекулу, а обычное понятие молекулы здесь утрачивает свой смысл. Вещества с ионной решеткой характеризуются высокой температурой плавления, малой летучестью, высокой прочностью и значительной энергией кристаллической решетки. Эти свойства сближают ионные кристаллы с атомными. Энергия связи ионной решетки примерно равна, по некоторым источникам меньше, энергии ковалентной решетки.

Металлические решетки образуют металлы. В узлах решеток находятся ионы металлов, а валентные электроны делокализованы по всему кристаллу. Такие кристаллы можно рассматривать как одну огромную молекулу с единой системой многоцентровых молекулярных орбиталей. Электроны находятся на связывающих орбиталях системы, а разрыхляющие орбитали образуют зону проводимости. Так как энергия связи связывающих и разрыхляющих орбиталей близка, электроны легко переходят в зону проводимости и перемещаются в пределах кристалла, образуя как бы электронный газ. В табл. 3.1 в качестве примера приведены энергии связи для кристаллов с разным типом связи.

Упорядоченное расположение частиц в кристалле сохраняется на больших расстояниях, а в случае идеально образованных кристаллов – во всем объеме материала. Такая упорядоченность строения твердых тел носит название дальний порядок.

Общие сведения о строительных материалах.

В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-гидротехника требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.


ЛЕКЦИЯ №1

Общие сведения о строительных материалах и их основные свойства.

Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на природные и искусственные, которые в свою очередь подразделяются на две основные категории: к первой категории относят: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории - специального назначения: гидроизоляционные, теплоизоляционные, акустические и др.

Основными видами строительных материалов и изделий являются: каменные природные строительные материалы из них; вяжущие материалы неорганические и органические; лесные материалы и изделия из них; металлические изделия. В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения – водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорого (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.

Классифицируя материалы и изделия, необходимо помнить, что они должны обладать хорошими свойствами и качествами .

Свойство – характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.

Качество – совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.

Свойства строительных материалов и изделий классифицируют на три основные группы: физические, механические, химические, технологические и др.

К химическим относят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.

Физические свойства : средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.

Механические свойства : пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.

Технологические свойства : удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

Физические и химические свойства материалов.

Средняя плотность ρ 0 массы m единицы объёма V 1 абсолютно сухого материала в естественном состоянии; она выражается в г/см 3 , кг/л, кг/м 3 .

Насыпная плотность сыпучих материалов ρ н массы m единицы объёма V н просушенного свободно насыпанного материала; она выражается в г/см 3 , кг/л, кг/м 3 .

Истинная плотность ρ массы m единицы объёма V материала в абсолютно плотном состоянии; она выражается в г/см 3 , кг/л, кг/м 3 .

Относительная плотность ρ(%) – степень заполнения объёма материала твёрдым веществом; она характеризуется отношением общего объёма твёрдого вещества V в материале ко всему объёму материала V 1 или отношением средней плотности материала ρ 0 к её истинной плотности ρ: , или.

Пористость П - степень заполнения объёма материала порами, пустотами, газо-воздушными включениями:

для твёрдых материалов: , для сыпучих:

Гигроскопичность - способность материала поглощать влагу из окружающей среды и сгущать её в массе материала.

Влажность W (%) – отношение массы воды в материале m в = m 1 - m к массе его в абсолютно сухом состоянии m :

Водопоглащение В – характеризует способность материала при соприкосновении с водой впитывать и удерживать её в своей массе. Различают массовое В м и объёмное В о водопоглащение.

Массовое водопоглащение (%) – отношение массы поглощённой материалом воды m в к массе материала в абсолютно сухом состоянии m :

Объёмное водопоглащение (%) – отношение объёма поглощённой материалом воды m в / ρ в к его объёму в водонасыщенном состоянии V 2 :

Влагоотдача – способность материала отдавать влагу.

Механические свойства материалов.

Предел прочности при сжатии R – отношение разрушающей нагрузки Р(Н) к площади сечения образца F (см 2). Он зависит от размеров образца, скорости приложения нагрузки, формы образца, влажности.

Предел прочности при растяжении R р - отношение разрушающей нагрузки Р к первоначальной площади сечения образца F .

Предел прочности при изгибе R и – определяют на специально изготовленных балочках.

Жёсткость – свойство материала давать небольшие упругие деформации.

Твёрдость – способность материала (металла, бетона, древесины) сопротивляться прониканию в него под постоянной нагрузкой стального шарика.

ЛЕКЦИЯ №2

Природные каменные материалы.

Классификация и основные виды горных пород.

В качестве природных каменных материалов в строительстве используют горные породы, которые обладают необходимыми строительными свойствами.

По геологической классификации горные породы подразделяют на три типа:

1) изверженные (первичные) , 2) осадочные (вторичные) и 3) метаморфические (видоизменённые) .

1) Изверженные (первичные) горные породы образовались при остывании поднявшейся из глубин земли расплавленной магмы. Строения и свойства изверженных горных пород в значительной степени зависят от условия остывания магмы, в связи с чем эти породы подразделяют на глубинные и излившиеся .

Глубинные горные породы образовались при медленном остывании магмы в глубине земной коры при больших давлениях вышележащих слоёв земли, что способствовало формированию пород с плотной зернисто-кристаллической структурой, большой и средней плотностью, высоким пределом прочности при сжатии. Эти породы обладают малым водопоглащением и высокой морозостойкостью. К этим породам относят гранит, сиенит, диорит, габбро и др.

Излившиеся породы образовались в процессе выхода магмы на земную поверхность при сравнительно быстром и неравномерном охлаждении. Наиболее распространёнными излившимися породами являются порфир, диабаз, базальт, вулканические рыхлые породы.

2) Осадочные (вторичные) горные породы образовались из первичных (изверженных) горных пород под воздействием температурных перепадов, солнечной радиации, действия воды, атмосферных газов и др. В связи с этим осадочные горные породы подразделяют на обломочные (рыхлые) , химические и органогенные .

К обломочным рыхлым горным породам относят гравий, щебень, песок, глину.

Химические осадочные породы : известняк, доломит, гипс.

Органогенные горные породы : известняк-ракушечник, диатомит, мел.

3) Метаморфические (видоизменённые) горные породы образовались из изверженных и осадочных горных пород под влиянием высоких температур и давлений в процессе поднятия и опускания земной коры. К ним относят глинистый сланец, мрамор, кварцит.

Классификация и основные виды природных каменных материалов.

Природные каменные материалы и изделия получают путём обработки горных пород.

По способу получения каменные материалы подразделяют на рваный камень (бут) – добывают взрывным способом; грубоколотый камень – получают раскалыванием без обработки; дроблёный – получают дроблением (щебень, искусственный песок); сортированный камень (булыжник, гравий).

Каменные материалы по форме делят на камни неправильной формы (щебень, гравий) и штучные изделия, имеющие правильную форму (плиты, блоки).

Щебень – остроугольные куски горных пород размером от 5 до 70 мм, получаемые при механическом или природном дроблении бута (рваный камень) или естественных камней. Его используют в качестве крупного заполнителя для приготовления бетонных смесей, устройства оснований.

Гравий – окатанные куски горных пород размером от 5 до 120 мм, также используется для приготовления искусственных гравийно-щебёночных смесей.

– рыхлая смесь зёрен горных пород размером от 0,14 до 5 мм. Он образуется обычно в результате выветривания горных пород, но может быть получен и искусственным путём – дроблением гравия, щебня, и кусков горных пород.

ЛЕКЦИЯ №3

Гидротационные (неорганические) вяжущие вещества.

1. Воздушные вяжущие вещества.

2. Гидравлические вяжущие вещества.

Гидротационными (неорганическими) вяжущими веществами называют тонко измельченные материалы (порошки), которые при смешивании с водой образуют пластичное тесто, способное в процессе химического взаимодействия с ней затвердевать, набирать прочность, связывая при этом в единый монолит введённые в него заполнители, обычно каменные материалы (песок, гравий, щебень), образуя тем самым искусственный камень типа песчаника, конгломерата.

Гидротационные вяжущие подразделяют на воздушные (твердеющие и набирающие прочность только в воздушной среде) и гидравлические (твердеющие во влажной, воздушной среде и под водой).

Строительная воздушная известь CaO – продукт умеренного обжига при 900-1300°С природных карбонатных пород CaCO 3 , содержащих до 8% глинистых примесей (известняк, доломит, мел и др.). Обжиг осуществляют в шахтах и вращающихся печах. Наиболее широкое распространение получили шахтные печи. При обжиге известняка в шахтной печи движущийся в шахте сверху вниз материал проходит последовательно три зоны: зону подогрева (сушка сырья и выделение летучих веществ), зону обжига (разложение веществ) и зону охлаждения. В зоне подогрева известняк нагревается до 900°С за счёт тепла поступающего из зоны обжига от газообразных продуктов горения. В зоне обжига происходит горение топлива и разложение известняка CaCO 3 на известь CaO и двуокись углерода CO 2 при 1000-1200°С. В зоне охлаждения обожжённый известняк охлаждается до 80-100°С двигающимся снизу вверх холодным воздухом.

В результате обжига полностью теряется двуокись углерода и получается комовая, негашёная известь в виде кусков белого или серого цвета. Комовая негашёная известь является продуктом, из которого получают разные виды строительной воздушной извести: молотую порошкообразную негашёную известь, известковое тесто.

Строительную воздушную известь различного вида используют при приготовлении кладочных и штукатурных растворов, бетонов низких марок (работающих в воздушно-сухих условиях), изготовлении плотных силикатных изделий (кирпича, крупных блоков, панелей), получении смешанных цементов.

Гидротехнические и гидромелиорационные сооружения и конструкции работают в условиях постоянного воздействия воды. Эти тяжёлые условия эксплуатации конструкций и сооружений требуют применения вяжущих веществ, обладающих не только необходимыми прочностными свойствами, но и водостойкостью, морозостойкостью и коррозионной стойкостью. Такими свойствами обладают гидравлические вяжущие вещества.

Гидравлическую известь получают умеренным обжигом природных мергелей и мергелистых известняков при 900-1100°С. Мергель и мергелистый известняк идущие для производства гидравлической извести содержат от 6 до 25% глинистых и песчаных примесей. Её гидравлические свойства характеризуются гидравлическим (или основным) модулем (m ), представляющим отношение в процентах содержания окислов кальция к содержанию суммы окислов кремния, алюминия и железа:

Гидравлическая известь – медленно схватывающееся и медленнотвердеющее вещество. Её применяют для приготовления строительных растворов, низкомарочных бетонов, легких бетонов, при получении смешанных бетонов.

Портландцемент – гидравлическое вяжущее вещество, получаемое путём совместного, тонкого помола клинкера и двуводного гипса. Клинкера – продукт обжига до спекания (при t>1480°С) однородной, определённого состава природной или сырьевой смеси известняка или гипса. Сырьевую массу обжигают во вращающихся печах.

Портландцемент как вяжущее вещество используют при приготовлении цементных растворов и бетонов.

Шлакопортландцемент - в своём составе имеет гидравлическую добавку в виде гранулированного, доменного или электротермофосфорного шлака., охлаждаемого по специальному режиму. Его получают путём совместного помола портландцементного клинкера (до 3,5%), шлака (20…80%), и гипсового камня (до 3,5%). Шлакопортландцемент имеет медленное нарастание прочности в начальные сроки твердения, однако в дальнейшем скорость нарастания прочности нарастает. Он чувствителен к окружающей температуре, стоек при воздействии на него мягких сульфатных вод, имеет пониженную морозостойкость.

Карбонатный портландцемент получают путём совместного помола цементного клинкера с 30% известняка. Он обладает пониженным тепловыделением при твердении, повышенной стойкостью.

ЛЕКЦИЯ №4

Строительные растворы.

Общие сведения.


Строительные растворы представляют собой тщательно отдозированные мелкозернистые смеси, состоящие из неорганического вяжущего вещества (цемент, известь, гипс, глина), мелкого заполнителя (песка, дроблёного шлака), воды и в необходимых случаях добавок (неорганических или органических). В свежеприготовленном состоянии их можно укладывать на основание тонким слоем, заполняя все его неровности. Они не расслаиваются, схватываются, твердеют и набирают прочность, превращаясь в камневидный материал. Строительные растворы используют при каменных кладках, отделочных, ремонтных и др. работах. Их классифицируют по средней плотности: тяжёлые с средней ρ =1500кг/м 3 , лёгкие со средней ρ <1500кг/м 3 . По назначению: гидроизоляционные, талтопогенные, инъекционные, кладочные, отделочные и др.

Растворы приготовленные на одном виде вяжущего вещества, называют простыми, из нескольких вяжущих веществ смешанными (цементно-известковый). Строительные растворы приготовленные на воздушных вяжущих, называют воздушными (глиняные, известковые, гипсовые). Состав растворов выражают двумя (простые 1:4) или тремя (смешанные 1:0,5:4) числами, показывающие объёмное соотношение количества вяжущего и мелкого заполнителя. В смешанных растворах первое число выражает объёмную часть основного вяжущего вещества, второе – объёмную часть дополнительного вяжущего вещества по отношению к основному. В зависимости от количества вяжущего вещества и мелкого заполнителя растворные смеси подразделяют на жирные – с содержанием большого количества вяжущего вещества. Нормальные – с обычным содержанием вяжущего вещества. Тощие – содержащие относительно небольшое количество вяжущего вещества (малопластичные).

Для приготовления строительных растворов лучше использовать песок с зёрнами, имеющими шероховатую поверхность. Песок предохраняет раствор от растрескивания при твердении, снижает его стоимость.

Гидроизоляционные растворы (водонепроницаемые) – цементные растворы состава 1:1 – 1:3,5 (обычно жирные), в которые добавляют церезит, амоминат натрия, нитрат кальция, хлористое железо, битумную эмульсию.

Церезит – представляет массу белого или жёлтого цвета, получаемую из анилиновой кислоты, извести, аммиака. Церезит заполняет мелкие поры, увеличивает плотность раствора, делая его водонепроницаемым.

Для изготовления гидроизоляционных растворов используют портландцемент, сульфатостойкий портландцемент. В качестве мелкого заполнителя в гидроизоляционных растворах используют песок.

Кладочные строительные растворы – используют при кладке каменных стен, подземных сооружений. Они бывают цементно-известковые, цементно-глиняные, известковые и цементные.

Отделочные (штукатурные) растворы - подразделяют по назначению на наружные и внутренние, по расположению в штукатурке на подготовительные и отделочные.

Акустические растворы – лёгкие растворы, обладающие хорошей звукоизоляцией. Приготовляют эти растворы из портландцемента, шлакопортландцемента, извести, гипса и др. вяжущих веществ с использованием в качестве заполнителя лёгких пористых материалов (пемзы, перлита, керамзита, шлака).

ЛЕКЦИЯ №5

Обычный бетон на гидротационных вяжущих веществах.

1. Материалы для обычного (тёплого) бетона.

2. Проектирование состава бетонной смеси.

Бетон – искусственный каменный материал, получаемый в результате затвердевания бетонной смеси, состоящий в отдозированных в определённом соотношении гидротационных вяжущих веществ (цементирующих), мелких (песок) и крупных (щебень, гравий) заполнителей, воды и в необходимых случаях добавок.

Цемент . При приготовлении бетонной смеси применяемый вид цемента и его марка зависят от условий работы будущей бетонной конструкции или сооружения, их назначения, способов производства работ.

Вода . Для приготовления бетонной смеси применяют обычную питьевую воду, не содержащую вредных примесей, препятствующих твердению цементного камня. Запрещается применять для приготовления бетонной смеси сточные, производственные, или бытовые воды, болотные воды.

Мелкий заполнитель . В качестве мелкого заполнителя применяют природный или искусственный песок. Размер зёрен от 0,14 до 5 мм истинная плотность более ρ >1800кг/м 3 . Искусственный песок получают путём дробления плотных, тяжёлых горных пород. При оценке качества песка определяют его истинную плотность, среднюю насыпную плотность, межзерновую пустотность, влажность, зерновой состав и модуль крупности. Кроме того, следует исследовать дополнительные качественные показатели песка – форму зёрен (остроугольность, окатаимость…), шероховатость и др. Зерновой или гранулометрический состав песка должен отвечать требованиям ГОСТ 8736-77. Его определяют путём просеивания просушенного песка через набор сит с отверстиями размером 5,0; 2,5; 1,25; 0,63; 0,315 и 0,14 мм. В результате просеивания навески песка через этот набор сит на каждом из них остаётся остаток, называемый частным a i . Его находят как отношение массы остатка на данном сите m i к массе всей навески песка m :

Кроме частных остатков находят полные остатки А , которые определяют как сумму всех частных остатков в % на вышележащих ситах + частный остаток на данном сите:

По результатам просеивания песка определяют его модуль крупности:

где А – полные остатки на ситах, %.

По модулю крупности различают песок крупный (М к >2,5 ), средний (М к =2,5…2,0 ), мелкий (М к =2,0…1,5 ), очень мелкий (М к =1,5…1,0 ) .

Путём нанесения кривой просеивания песка на график допускаемого зернового состава определяют пригодность песка для изготовления бетонной смеси.


1- кривая лабораторного просеивания соответственно для песка и крупного заполнителя.

Большое значения в подборе песка для бетонной смеси имеет его межзерновая пустотность V п (%) , которую определяют по формуле:


ρ н.п – насыпная плотность песка, г/см 3 ;

ρ – истинная плотность песка, г/см 3 ;

В хороших песках межзерновая пустотность составляет 30…38%, в разнозернистых – 40…42%.

Крупный заполнитель . В качестве крупного заполнителя бетонной смеси применяют природный или искусственный щебень либо гравий с крупностью зёрен от 5 до 70мм.

Чтобы обеспечить оптимальный зерновой состав крупный заполнитель делят на фракции в зависимости от наибольшей крупности зёрен Д наиб. ; При Д наиб =20мм крупный заполнитель имеет две фракции: от 5 до 10 мм и от 10 до 20 мм;

При Д наиб =40мм – три фракции: от 5 до 10 мм; от 10 до 20 мм и от 20 до 40 мм;

При Д наиб =70мм – четыре фракции: от 5 до 10 мм; от 10 до 20 мм; от 20 до 40 мм; от 40 до 70 мм. Большое влияние на расход цемента при приготовлении бетонной смеси имеет показатель межзерновой пустотности крупного заполнителя V п.кр (%), которую определяют с точностью до 0,01% по формуле:

ρ н.кр – средняя насыпная плотность крупного заполнителя.

ρ к.кус – средняя плотность крупного заполнителя в куске.

Показатель межзерновой пустотности должен быть минимальным. Меньшим его значение можно получить путём подбора оптимального зернового состава крупного заполнителя.

Зерновой состав крупного заполнителя устанавливают в результате просеивания просушенного крупного заполнителя набором сит с отверстиями размером 70; 40; 20; 10; 5 мм с учётом его максимальной Д наиб и минимальной Д наим крупности.

Щебень – обычно искусственный рыхлый материал с неокатанными шероховатыми зёрнами, получаемый путём дробления горных пород, крупного природного гравия или искусственных камней. Для определения пригодности щебня необходимо знать: истинную плотность горной породы, среднюю плотность щебня, среднюю насыпную плотность щебня, относительную межзерновую пустотность и влажность щебня

Гравий – рыхлый природный материал с окатанными, гладкими зёрнами, образовавшийся в процессе физического выветривания горных пород. К гравию предъявляют те же требования что и к щебню.

Добавки . Введение добавок в цемент, растворную или бетонную смесь является простым и удобным способом повышения качества цемента, растворного камня и бетона. Позволяющим значительно улучшить не только их свойства но и технические, эксплуатационные показатели. Добавки используют при производстве вяжущих веществ, приготовлении строительных растворов и бетонных смесей. Они позволяют изменить качество бетонной смеси и самого бетона; воздействуя на удобоукладываемость, механическую прочность, морозостойкость, трещиностойкость, водостойкость, водонепроницаемость, теплопроводность, стойкость к окружающей среде.


К основным свойствам бетонной смеси относят связность (способность сохранять её однородность, не расслаиваясь при транспортировке, выгрузке), однородность, водоудерживающую способность (значительную роль играет в образовании структуры бетона, приобретении им прочности, водонепроницаемости и морозостойкости), удобоукладываемость (способность её быстро с минимальной затратой энергии приобретать необходимую конфигурацию и плотность, обеспечивая получение бетона высокой плотности).

Свежеприготовленная бетонная смесь должна быть хорошо перемешана (однородна), пригодна к транспортировке на место укладки с учётом погодных условий, при этом сопротивляться водоотделению и расслоению.


В задачу проектирования и подбора состава бетонной смеси входит выбор необходимых материалов (вяжущего вещества и др. компонентов) и установление их оптимального количественного соотношения. На основе этого получают бетонную смесь с заданными технологическими свойствами, а также максимально экономичный и долговечный бетон, отвечающий проектным и эксплуатационным требованиям при минимально возможном расходе цемента. Следовательно, бетонная смесь запроектированного состава должна обладать нерасслаивоемостью, необходимой удобоукладываемостью, связностью, а бетон, изготовленный из этой смеси – требуемыми свойствами: плотностью, прочностью, морозостойкостью, водонепроницаемостью.

Наиболее простой способ проектирования состава бетонной смеси – расчёт по абсолютным объёмам, в основе которого принято, что приготовленная, уложенная и уплотнённая бетонная смесь не должна иметь пустот.

Проектирование состава выполняют с использованием действующих рекомендаций и нормативных документов в такой последовательности:

1. Назначают для заданной марки бетона R б рациональную марку цемента R ц .

2. Определяют водоцементное отношение В/Ц , для обычного бетона с В/Ц ≥0,4: В/Ц=А· R ц /(R б +0,5А· R ц ) ; где R ц – марка цемента; R б – марка бетона; А – коэффициент учитывающий качество используемых компонентов.

3. Назначают ориентировочный расход воды на 1м 3 бетонной смеси. Расход воды, необходимый для получения бетонной смеси заданной подвижности, зависит не только от вида и наибольшей крупности заполнителя, но и от формы и шероховатости зёрен.

4. Рассчитывают расход цемента (кг на 1м 3 бетона) по найденному отношению В/Ц и принятому ориентировочному расходу воды: ;

5. Вычисляют расход заполнителей исходя из условия, чтобы сумма абсолютных объёмов всех составляющих материалов бетона была равно 1м 3 уложенной и уплотнённой бетонной смеси:

Ц, В, П, Кр – расходы цемента, воды, песка, крупного заполнителя на 1м 3 смеси, кг.

ρ ц, ρ в, ρ п, ρ кр – плотность этих материалов, кг/м 3 ;

- их абсолютные объёмы, м 3 .

Формулы для определения расхода заполнителей (кг на 1м 3 бетона):

крупного заполнителя:

r – коэф. раздвижки зёрен крупного заполнителя, принимается ориентировочно (табличные данные)

П кр – пустотность крупного заполнителя.

Ρ н.кр – насыпная плотность крупного заполнителя.

мелкого заполнителя (песка) :

6. Вычисляют расчётную среднюю плотность бетонной смеси:

и коэффициент выхода бетона:

Коэффициент выхода бетона β должен быть в пределах 0,55…0,75.

Запроектированный состав бетонной смеси уточняют на пробных замесах. На них же проверяют подвижность бетонной смеси. Если подвижность бетонной смеси окажется больше требуемой, то в замес небольшими порциями добавляют воду и цемент, сохраняя при этом постоянным отношение В/Ц до тех пор, пока подвижность бетонной смеси станет равной заданной. Если подвижность окажется больше заданной то в неё добавляют песок и крупный заполнитель (порциями по 5% первоначального количества), сохраняя выбранное отношение В/Ц . По результатам пробных замесов вносят коррективы в запроектированный состав бетонной смеси, учитывая что в производственных условиях используемые песок и крупный заполнитель находятся во влажном состоянии, а крупный заполнитель имеет некоторое водопоглащение, расход (л ) требуемой воды на приготовление 1м 3 бетонной смеси уточняют по формуле:

В – расход найденной (расчётной) воды, л/м 3

П, Кр – расход песка и крупного заполнителя, кг/м 3

W п , W кр влажность песка и крупного заполнителя, %.

В кр – водопоглащение крупного заполнителя, %.

ЛЕКЦИЯ №6

1. Приготовление, транспортировка и укладка бетонной смеси. Уход за свежеуложенным бетоном и контроль его качества.

2. Гидротехнический бетон.

3. Бетоны специальных видов.


Бетонные смеси приготавливают на стационарных бетонных заводах или в передвижных бетоносмесительных установках. На качество бетонной смеси (однородность) влияет качество её перемешивания в процессе приготовления. Продолжительность перемешивания составляет несколько минут. Допускается повторное перемешивание бетонной смеси в пределах 3…5 часов от момента её приготовления. Важнейшее условие приготовления бетонной смеси – тщательное дозирование составляющих материалов. Отклонение в дозировке допускается не более ±1% по массе для цемента и воды, и не более ±2% для заполнителей. Приготовленную бетонную смесь доставляют к месту укладки специальными транспортными средствами. Продолжительность транспортировки готовой бетонной смеси к месту укладки не должна превышать 1 час. В настоящее время бетонную смесь укладывают механизировано с помощью бетоноукладчиков, бетонораздатчиков. Уплотнение бетонной смеси во время укладки обеспечивает качественное заполнение смесью всех промежутков. Наиболее распространённый способ уплотнения бетонной смеси – вибрирование. При вибрировании бетонной смеси уменьшается трение между её составляющими, увеличивается текучесть, смесь переходит в состояние тяжёлой вязкой жидкости и под действием собственного веса уплотняется. В процессе уплотнения из бетонной смеси удаляется воздух и бетон приобретает хорошую плотность. Чтобы улучшить структурообразовывающие бетона, повысить его прочность, морозостойкость, водонепроницаемость применяют повторное вибрирование бетонной смеси через 1,5-2ч. с момента первого вибрирования.

Для получения высококачественного бетона необходим соответствующий уход за свежеуложенным бетоном. Отсутствие ухода за свежеуложенным бетоном может привести к получению низкокачественного бетона. Основные мероприятия по уходу за бетоном – укрытие хорошо увлажненной мешковиной, песком, опилкой, покрытие плёнкообразующим составом. Укрывать следует не позднее чем через 30 минут после уплотнения бетонной смеси.

В зимнее время существуют следующие способы ухода: безобогревные и с искусственным прогревом. К безобогревным относят способы термоса с противоморозными добавками. Искусственный прогрев бетона осуществляется электропрогревом, паропрогревом, воздухопрогревом.


Бетон применяемый при строительстве гидротехнический и гидромелиорационных соор., постоянно или периодически омываемых водой, называют гидротехническим. Гидротехнический бетон должен обладать не только прочностью, морозостойкостью, но и водонепроницаемостью и водостойкостью, которые обеспечат длительную службу его в водной среде.

В зависимости от расположения по отношению к уровню воды гидротехнический бетон в сооружениях или конструкциях подразделяют на подводный – постоянно находящийся в воде; зоны переменного уровня – подвергающийся периодическому омыванию водой; надводный – находящийся выше зоны переменного уровня. По площади поверхности конструкций гидротехнический бетон делят на массивный и немассивный, а по месту нахождения в сооружении – наружных и внутренних зон.

Основные строительно-технические свойства гидротехнического бетона – водонепроницаемость, морозостойкость, водопоглащение, прочность, стойкость против агрессивного воздействия воды, тепловыделение, долговечность, подвижность и жёсткость бетонной смеси.

В качестве вяжущих материалов для гидротехнического бетона применяют портландцемент. Для повышения качества гидротехнического бетона рекомендуется вводить в него добавки, которые позволяют уменьшить объёмное расширение, усадку, водопотребность. Песок для гидротехнического бетона применяют крупный, средней крупности и мелкий природный или искусственный, из твёрдых и плотных горных пород. В качестве крупного заполнителя для гидротехнического бетона применяют гравий, щебень из горных пород.


Особо тяжёлый бетон – применяют для специальных защитных сооружений (для защиты от радиоактивных воздействий). Он имеет среднюю плотность более 2500 кг/м 3 . В качестве заполнителя используют магнетит, лимонит, гидрогенит, гематит, барит, что определяет наименование бетона – магнетитовый, лимонитовый, баритовый, … Вяжущими в этом бетоне служат портландцемент, шлакопортландцемент и глинозёмистый цемент.

Дорожный бетон – применяют при строительстве автомобильных дорог, аэродромов, городских улиц. Для приготовления бетонной смеси дорожного бетона используют высококачественные материалы. В качестве вяжущих применяют пластифицированный портландцемент.

Сухой бетон – это сухая бетонная смесь, отдозированная на заводе из сухих компонентов (цемента, песка, крупного заполнителя…). На месте укладки бетонную смесь перемешивают с водой в бетономешалках или непосредственно в автобетоносмесителях.

ЛЕКЦИЯ №7

Бетонные и железобетонные изделия в гидромелиоративном строительстве.

Общие сведения.

Железобетон – это искусственный материал, представляющий бетон, внутри которого расположена стальная арматура. Стальная арматура хорошо воспринимает, не только сжимающие, но и растягивающие усилия, возникающие в конструкции при внецентральном сжатии, растяжении, изгибе. Железобетонные конструкции могут быть монолитными, когда бетонирование выполняют непосредственно на месте строительства, и сборными, когда конструкции изготавливают на заводах.

Сборные бетонные и железобетонные изделия классифицируют по виду бетона: цементные, силикатные; внутреннему строению: сплошные и пустотелые; по назначению: для жилых, общественных, промышленных, водохозяйственных и др. зданий и сооружений.

Железобетонные сооружения, конструкции и изделия изготовляют из обычного бетона марки не ниже 200, лёгкого бетона марки не ниже 50 и плотного силикатного бетона марки не ниже 100. Бетон марки 200 используют для изготовления слабонагруженных бетонных и железобетонных изделий, работающих в основном на сжатие. Бетоны марок 300, 400, 500, 600 используют при изготовлении железобетонных изделий с большой несущей способностью.

Бетоны применяемые для приготовления бетонных и железобетонных изделий, конструкций и сооружений гидромелиоративного назначения должны обеспечивать их надёжность и долговечность.

Для формирования обычных (ненапряжённых) железобетонных монолитных сооружений, а также сборных изделий и конструкций применяют сварные сетки и каркасы, рулонные сетки из стальной горячекатаной арматуры. При изготовлении ненапряженных конструкций и изделий применяют высокопрочную проволоку, арматурные канаты. Арматуру предварительно растягивают (напрягают). Натяжение арматуры осуществляют до бетонирования с помощью различных анкеров и зажимов. После укладки, затвердевания бетонной смеси и приобретения бетоном прочности концы арматуры освобождают (отрезают) и она, стремясь возвратиться в первоначальное состояние, напрягает (обжимает) бетон. При монтаже напряжённых конструкций арматуру помещают в специальные каналы, после чего растягивают таким образом, чтобы в процессе растяжения происходило обжатие этих элементов в конструкции. После достижения необходимого обжатия конструкции и растяжения арматуры концы её заанкеривают, а каналы в которых проходит арматура, омоноличивают высокопрочным цементным раствором. Когда раствор приобретает необходимую прочность, концы арматуры обрезают, в результате чего конструкция приобретает напряжение, которое позволяет увеличить её несущую способность.

Сборные бетонные изделия.

Трубы дренажные из грунтоселикатобетона изготовляют из смеси местного грунта (песка, супеси, суглинка), молотого шлака и щелочного компонента. Длина труб 333 мм, внутренний диаметр 50; 70; 100; 150 мм, толщина стенки 10; 15; 20 мм. Они обладают большой несущей способностью, морозостойкостью. Применяют их при строительстве закрытых дренажных осушителей.

Трубы дренажные из фильтр-го бетона изготовляют способом послойного прессования. Длина труб 500, 600, 900 мм, внутренний диаметр 100, 150 и 200 мм, толщина стенки 25, 30, 40 мм. Предназначены они для устройства закрытого дренажа.

Фундаментные столбы , изготавливаемые из бетона марки 100, используют в качестве столбчатых фундаментов бревёнчатых, щитовых и каркасных деревянных зданий.

Железобетонные изделия и конструкции.

Фундаментные блоки для лотков имеют марки Ф-12-6, Ф15-9, Ф18-9, Ф21-12, где первая цифра обозначат длину L , вторая – ширину В блока. Их изготавливают из гидротехнического бетона марок не ниже 200.

Лотки параболического сечения для оросительных систем имеют с одной стороны раструб, а с другой стороны гладкий конец. Выпускают их ненапряжёнными (ЛР) длиной L =6000 мм, и напряжёнными (ЛРН) длиной L =8000 мм марок соответственно ЛР-4; ЛР-6; ЛР-8; ЛР-10 и ЛРН-4; ЛРН-6; ЛРН-8; ЛРН-10, где цифра обозначает глубину лотков Н в дм. Лотки изготавливают из гидротехнического бетона марок 300.


Стекло и стеклянные изделия.

Стекло – переохлаждённый расплав сложного состава из смеси силикатов и других веществ. Отформованные стеклянные изделия подвергают специальной термической обработки – обжигу.

Оконное стекло выпускают в листах размером от 250х250 до 1600х2000мм двух сортов. По толщине стекло делят на одинарное (толщиной 2мм), полуторное (2,5мм), двойное (3мм) и утолщённое (4…6мм).

Витринное стекло выпускают полированным и неполированным в виде плоских или гнутых листов толщиной 6..12 мм. Применяют его для остекления витрин и проёмов.

Стекло листовое высокоотражающее – это обычное оконное стекло, на поверхность которого нанесена тонкая полупрозрачная отражающая свет плёнка изготовленная на основе окиси титана. Стекло с плёнкой отражает до 40% входимого света, светопропускание 50…50%. Стекло уменьшает просмотр с наружной стороны и снижает проникание внутрь помещения солнечной радиации.

Стекло листовое радиозащитное – это обычное оконное стекло, на поверхность которого нанесена тонкая прозрачная экранирующая плёнка. Экранирующую плёнку наносят на стекло в процессе его формирования на машинах. Светопропускание не ниже 70%

Армированное стекло –изготавливают на поточных линиях методом непрерывного проката с одновременным закатыванием внутрь листа металлической сетки. Это стекло имеет гладкую, узорчатую поверхность, может быть бесцветным или цветным.

Стекло теплопоглощающее обладает способностью поглощать инфракрасные лучи солнечного спектра. Оно предназначено для остекления оконных проёмов с целью уменьшения проникания солнечной радиации внутрь помещений. Это стекло пропускает лучи видимого света не менее чем на 65%, инфракрасных лучей не более 35%.

Стеклянные трубы изготавливают из обычного прозрачного стекла способом вертикального или горизонтального вытягивания. Длина труб 1000…3000 мм, внутренний диаметр 38-200мм. Трубы выдерживают гидравлическое давление до 2МПа.

Ситаллы получают путём введения в расплавленную стеклянную массу специального состава катализаторов кристаллизации. Из такого расплава формируют изделия, затем их охлаждают, в результате чего расплавленная масса превращается в стекло. При последующей тепловой обработке стекла происходит его полная или частичная кристаллизация – образуется ситолл. Они имеют большую прочность, малую среднюю плотность, высокую износостойкость. Их применяют при облицовке наружных или внутренних стен, изготовление труб, плит для полов.

Стемалит представляет листовое стекло различной фактуры, покрытое с одной стороны глухими керамическими кристаллами разного цвета. Изготавливают его из неполированного витринного или прокатного стекла толщиной 6…12мм. Применяют его для наружной и внутренней облицовки зданий, изготовления стеновых панелей.

ЛЕКЦИЯ №8

Безобжиговые искусственные каменные материалы и изделия на основе гидротационных вяжущих веществ.


Безобжиговые искусственные каменные материалы и изделия изготавливают из смеси вяжущих веществ, воды и заполнителей путём её формирования и соответствующей обработки. По виду вяжущего вещества их подразделяют на силикатные, известково-шлаковые, газосиликатные, газобетонные, гипсовые, гипсобетонные, асбестоцементные и др.

По условиям твердения – их делят на изделия твердеющие при автоклавной и тепловой обработке, и на изделия, твердеющие в условиях воздушно-влажной среды.

Материалы и изделия автоклавного твердения.

Для производства изделий автоклавного твердения широко используют местные материалы: известь, кварцевые пески, отходы промышленности.

Прочные и водостойкие автоклавные материалы и изделия получаются в результате химического взаимодействия тонкоизмельчённых извести и кремнезёмистых компонентов в процессе их гидротермической обработки в паровой среде при 175°С в автоклавах под давлением 0,8…1,4МПа. В результате химической реакции возникает прочное и водостойкое вещество (силикат кальция), который цементирует частицы песка, образуя искусственный камень. Автоклавные материалы и изделия могут иметь как плотную, так и ячеистую структуру.

Автоклавный силикатный бетон – смесь известково-кремнезёмистого вяжущего, песка и воды. В качестве вяжущих используют известково-пуццолановый, известково-шлаковый и известково-зольный цементы. Изделия из силикатного автоклавного бетона имеют достаточную морозостойкость, водостойкость и химическую стойкость к некоторым агрессивным средам. Из автоклавного силикатного изготовляют крупные, плотные, силикатные стеновые блоки.

Автоклавный ячеистый бетон приготовляют из однородной смеси минерального вяжущего, кремнезёмистого компонента, гипса и воды. Вяжущими материалами служат портландцемент, молотая известь-кипелка. Во время выдержки изделия перед автоклавной обработкой из него выделяется водород, в результате чего в однородной пластично-вязкой вяжущей среде образуются мельчайшие пузырьки. В процессе газовыделения эти пузырьки увеличиваются в размерах, создавая сфероидальные ячейки во всей массе ячеистой бетонной смеси.

При автоклавной обработке под давлением 0,8..1,2Мпа в высоковлажной воздушно-паровой среде при 175…200°С происходит интенсивное взаимодействие вяжущего вещества кремнезёмным компонентов с образованием силиката кальция и др. цементирующих новообразований, благодаря которым структура ячеисто высокопористого бетона приобретает прочность.

Из ячеистого бетона изготовляют панели однорядной разрезки, стеновые и крупные блоки, однослойные и двухслойные стеновые навесные панели, однослойные плиты междуэтажных и чердачных перекрытий.

Силикатный кирпич формуют на специальных прессах из тщательно приготовленной однородной смеси чистого кварцевого песка (92…95%), воздушной извести (5…8%) и воды (7…8%). После прессования кирпич запаривают в автоклавах в среде, насыщенной парами, при 175°С и давлении 0,8МПа. Изготавливают кирпич одинарный размером 250х120х65мм и модульный (полуторный) размером 250х120х88мм; сплошной и пустотелый, лицевой и рядовой. Марка кирпича: 75, 100, 125, 150, 200, 250.

Асбестоцементные изделия.

Для изготовления асбестоцементных изделий используют асбестоцементную смесь, состоящую из тонковолокнистого асбеста (8…10%), портландцемента для асбестоцементных изделий и воды. После затвердевания смеси образуется искусственный асбестоцементный каменный материал, представляющий цементный камень. Для производства асбестоцементных изделий применяют асбест III-IV сорта, портландцемент для асбестоцементных изделий марок 300, 400, 500 или песчаный цемент, состоящий из портландцемента и тонкомолотого кварцевого песка и воду с температурой 20…25°С, не содержащему глинистых примесей, органических веществ и минеральных солей.

Трубы водопроводные безнапорные и напорные, для прокладки телефонных кабелей и газовые имеют правильную цилиндрическую форму. Они гладкие, не имеют трещин. Безнапорные трубы применяют при прокладке безнапорных внутренних и наружных трубопроводов, транспортирующих бутовые и атмосферные сточные воды; при строительстве безнапорных трубчатых гидротехнических сооружений и дренажных коллекторов осушительных систем; при подземной прокладке кабелей. Напорные трубы широко применяют при строительстве подземных водопроводов, современных автоматизированных оросительных систем, теплосетей.

Плиты плоские облицовочные прессованные изготовляют неокрашенные, окрашенные. Их применяют для облицовки стен, перегородок панелей. Длина их 600…1600мм, ширина 300…1200, толщина 4…10мм.

Гипсовые и гипсобетонные изделия.

Изделия на основе гипсовых вяжущих имеют сравнительно небольшую плотность, достаточную прочность, несгораемы, обладают высокими звуко- и тепло изоляционными свойствами, хорошо поддаются обработке (распиливанию, сверлению). Для повышения влаго- и водостойкости гипсовых изделий при их изготовлении используют гипсо-цементно-пуццолонавые и гипсошлакоцементнопуццолам. вяжущие, покрывают их водостойкими водонепроницаемыми защитными красками или пастами. Изделия на основе гипсовых вяжущих изготавливают из гипсового теста, гипсового раствора или гипсобетона с минеральными заполнителями (песок, керамзитовый гравий…) и органическими наполнителями (древесные опилки, стружка, камыш…). Гипсовые и гипсобетонные изделия обладают значительной хрупкостью, поэтому в них при их изготовлении вводят армирующие материалы в виде деревянных реек, камыша, металлической арматуры (сетка, проволока…)

Листы гипсовые обшивочные изготавливают из гипсового листа, облицованного с двух сторон картоном. Гипсовый лист приготовляют из смеси строительного гипса с минеральными или органическими добавками. Их применяют для внутренней обшивки стен, перегородок, потолков зданий.

Плиты гипсовые для перегородок изготовляют из смеси строительного гипса с минеральными или органическими наполнителями. Плиты выпускают сплошные и пустотелые толщиной 80…100мм. Гипсовые и гипсобетонные перегородочные плиты применяют для устройства перегородок внутри здания.

Панели гипсобетонные для основания полов изготовляют из гипсобетона с пределом прочности при сжатии не менее 7МПа. Они имеют деревянный реечный каркас. Размеры панелей определяются размерами помещений. Панели предназначены под полы из линолеума, плиток в помещениях с нормальной влажностью.

Блоки гипсовые вентиляционные изготавливают из строительного гипса с пределом прочности при сжатии 12…13Мпа или из смеси гипсоцементно-пуццоланового вяжущего с добавками. Блоки предназначены для устройства вентиляционных каналов в жилых, общественных и промышленных зданиях.

ЛЕКЦИЯ №9

Искусственные обжиговые материалы

Общие сведения.

Искусственные обжиговые материалы и изделия (керамику) получают путём обжига при 900…1300°С отформованной и высушенной глиняной массы. В результате обжига глиняная масса превращается в искусственный камень, обладающий хорошей прочностью, высокой плотностью сложения, водостойкостью, водонепроницаемостью, морозостойкостью и долговечностью. Сырьём для получения керамики служит глина с вводимыми в неё в некоторых случаях, отощающими добавками. Эти добавки уменьшают усадку изделий при сушке и обжиге, увеличивают пористость, уменьшают среднюю плотность и теплопроводность материала. В качестве добавок используют песок, измельчённую керамику, шлаки, золы, уголь, опилки. Температура обжига зависит от температуры начала плавления глины. Керамические строительные материалы подразделяют на пористые и плотные. Пористые материалы имеют относительную плотность до 95% и водопоглащение не более 5%; их предел прочности при сжатии не превышает 35МПа (кирпич, дренажные трубы). Плотные материалы имеют относительную плотность более 95%, водопоглащение менее 5%, предел прочности при сжатии до 100Мпа; они обладают износостойкостью (плитки для полов).

Керамические материалы и изделия из легкоплавких глин.

1) Кирпич глиняный обыкновенный пластического прессования изготавливают из глин с отощающими добавками или без них. Кирпич представляет собой параллелепипед. Марки кирпича: 300, 250, 200, 150, 125, 100, 75.

2) Кирпич (камень) керамический пустотелый пластического прессования выпускают для кладки несущих стен одноэтажных и многоэтажных зданий, внутренних помещений, стен и перегородок, облицовки кирпичных стен. Марка кирпича: 150, 125, 100 и 75.


3) Кирпич строительный лёгкий изготовляют путём формовки и обжига массы из глин с выгорающими добавками, а также из смесей песка и глин с выгорающими добавками. Размер кирпича: 250х120х88мм, марки 100, 75, 50, 35.

Кирпич глиняный обыкновенный применяют при кладке внутренних и наружных стен, столбов и других частей зданий и сооружений. Кирпич глиняный и керамический пустотелые применяют при кладке внутренних и наружных стен зданий и сооружений выше гидроизоляционного слоя. Кирпич лёгкий применяют при кладке наружных и внутренних стен зданий с нормальной влажностью внутри помещений.

4) Черепицу изготовляют из жирной глины путём обжига при 1000…1100°С. Доброкачественная черепица при лёгком ударе молотком издаёт чистый, не дребезжащий звук. Она прочна, очень долговечна и огнестойка. Недостатки – большая средняя плотность, утяжеляющая несущую конструкцию крыши, хрупкость, необходимость устраивать крыши с большим уклоном для обеспечения быстрого стока воды.

5) Дренажные керамические трубы изготавливают из глин с отощающими добавками или без них, внутренний диаметр 25...250 мм, длиной 333, 500, 1000 мм и толщиной стенок 8…24 мм. Их изготавливают на кирпичных ил специальных заводах. Дренажные керамические трубы применяют при строительстве осушительно-увлажнительных и оросительных систем, коллекторно-дренажных водоводов.

Керамические материалы и изделия из тугоплавких глин.

1) Камень для подземных коллекторов изготовляют трапецеидальной формы с боковыми пазами. Его применяют при прокладке подземных коллекторов диаметром 1,5 и 2 м, при устройстве канализационных и др. сооружений.

2) Плитку керамическую фасадную применяют для облицовки зданий и сооружений, панелей, блоков.

3) Керамические канализационные трубы изготавливают из тугоплавких и огнеупорных глин с отощающими добавками. Они имеют цилиндрическую форму и длину 800, 1000 и 1200 мм, внутренний диаметр 150…600 м.

4) Плитку для полов по виду лицевой поверхности подразделяют на гладкую, шероховатую и теснённую; по цвету – на одноцветную и многоцветную; по форме – на квадратную, прямоугольную, треугольную, шестигранную, четырёхгранную. Толщина плитки 10 и 13мм. Применяют её для устройства полов в помещениях промышленных, водохозяйственных зданий с влажным режимом.

ЛЕКЦИЯ №10

Коагуляционные (органические) вяжущие материалы.

Растворы и бетоны на их основе.

Органические вяжущие материалы, применяемые при устроительстве гидроизоляции, при изготовлении гидроизоляционных материалов и изделий, а также гидроизоляционных и асфальтовых растворов, асфальтобетонов, подразделяют на битумные, дёгтёвые, битумно-дёгтёвые. Они хорошо растворяются в органических растворителях (бензине, керосине), обладают водонепроницаемостью, способны при нагревании переходить из твёрдого состояния в пластичное, а затем жидкое, имеют высокую прилипаемость и хорошее сцепление со строительными материалами (бетоном, кирпичом, деревом).

Битумные материалы.

Битумы подразделяют на природные и искусственные. В природе чистые битумы встречаются редко. Обычно битум добывают из горных осадочных пористых пород, пропитанных им в результате поднятия нефти из нижележащих слоёв. Искусственные битумы получают при переработке нефти, в результате отгонки из её состава газов (пропан, этилен), бензина, керосина, дизельного топлива.

Природный битум – твёрдое вещество или вязкие жидкости, состоящие из смеси углеводородов.

Асфальтовые породы – горные породы, пропитанные битумом (известняки, доломиты, песчаники, пески и глины). Битум извлекают из них нагревом, или же применяют эти породы в молотом виде (асфальтовый порошок).

Асфальтиты – породы, состоящие из твёрдого природного битума и др. органических веществ, нерастворимых в сероуглероде.


Дёгтевые материалы.

Дёготь получают при сухой перегонке (нагревании при высоких температурах без доступа воздуха) каменного или бурого угля, торфа, древесины. В зависимости от исходного сырья дёготь подразделяют на каменноугольный, буроугольный, торфяной, древесный.

Каменноугольный дёготь – вязкая тёмно-бурая или чёрная жидкость, состоящая из углеводородов.

Каменноугольный пёк – твёрдое вещество чёрного цвета, получаемое после отгонки из дёгтя почти всех масляных фракций.

Каменноугольный дёготь, пёк, при нагревании или растворении образует ядовитые пары, поэтому при работе с ними необходимо соблюдать осторожность.

Асфальтовые растворы.

Асфальтовые растворы применяют при устройстве гидроизоляционных штукатурок и покрытий, тротуаров, полов. Они могут быть горячими (литыми) и холодными. Состав асфальтовых растворов подбирают в зависимости от условий эксплуатации их в сооружениях.

Холодный асфальтный раствор изготовляют из смеси нефтяных битумов (5…10%) с добавкой растворителя (бензола), порошкообразного минерального наполнителя (известняка, доломита) и чистого сухого песка, замешанной в специальных растворомешалках с разогревом до 110…120°С. Твердение холодного асфальтового раствора происходит в следствии испарения растворителя.

Горячий асфальтовый раствор изготовляют из смеси битума (или дёгтя, пёка), порошкообразного минерального наполнителя и песка. Смесь составляющих горячего асфальтового раствора перемешивают в специальных мешалках с разогревом до 120…180°С. Асфальтовый раствор укладывают слоями в горячем состоянии с укаткой каждого слоя катками.


Асфальтобетоны.

Асфальтобетоны приготовляют на специализированных асфальтовых заводах или установках. В зависимости от назначения их подразделяют на дорожный, для устройства полов; в зависимости от состава – на битумный и дёгтевый; в зависимости от температуры укладки– на холодный и горячий.

Холодный асфальтобетон укладывают слоями на сухие или слегка влажные поверхности с лёгкой укаткой катками. Изготовляют его из смеси жидких битумов, растворителей, порошкообразного минерального наполнителя (известняка, песка) чистого щебня и песка путём смешивания и нагрева.


ЛЕКЦИЯ №11

Полимерные материалы.

Общие сведения.

Полимерные материалы представляют природные или синтетические высокомолекулярные органические соединения, состоящие из огромного количества атомов. Строение молекул полимеров может иметь линейный или объёмный характер . Полимеры , молекулы которых имеют линейное строение , обладают термопластичностью – размягчаясь при нагревании они вновь затвердевают при охлаждении. Размягчение и отвердевание можно проводить многократно. Многократное нагревание с последующим охлаждением не вносит существенных изменений в свойства материала (полиэтилен, полистирол). Полимеры, имеющие объёмное строение молекул, обладают термореактивностью – они не могут многократно обратимо расплавляться и затвердевать. При первом нагревании они становятся пластичным и принимают заданную форму, переходя в неплавкое и нерастворимое состояние (фенопласты).

По упругим свойствам полимеры подразделяют на пластики (жёсткие) и эластики (эластичные).

Полимерные материалы содержат три группы веществ: связующие, пластификаторы и наполнители. Связующими веществами служат синтетические смолы. В качестве пластификаторов вводя глицерин, камфару и др. вещества, которые повышают эластичность и пластичность полимеров, облегчая их переработку. Наполнители (порошковые, волокнистые) придают полимерным изделиям большую механическую прочность, предотвращают усадку. Кроме этого, в состав вводят пигменты, стабилизаторы, ускорители твердения и др. вещества.

При изготовлении полимерных строительных материалов, изделий и конструкций наибольшее применение находят полиэтилен (плёнки, трубы), полистирол (плиты, лаки), полихлорвинил (линолеум), полиметилметакрилат (органическое стекло).

Благодаря хорошим механическим свойствам, эластичности, электроизоляционным качествам, способности принимать любую форму в процессе переработки полимерные материалы нашли широкое применение во всех областях строительства и в нашей повседневной жизни.


Исходные полимерные материалы.

Полимеры в зависимости от метода получения подразделяют на полимеризационные и поликонденсационные. Полимеризационные полимеры получают путём полимеризации. К ним относятся полиэтилен, полистирол. Поликонденсационные полимеры получают методом поликонденсации. К ним относятся полиэфирные, акриловые, кремнийорганические и др. смолы, полиэфиры, полиуретановые каучуки.

Полиэтилен получают полимеризацией этилена из попутного и природного газа. Он стареет под действием солнечной радиации, воздуха, воды. Его плотность 0,945 г/см 3 , морозостойкость –70°С термостойкость всего 60…80°С. По способу получения различают полиэтилен высокого давления (ПВД), низкого давления (ПНД) и на окисно-хромовом катализаторе (П). При нагревании до 80°С полиэтилен растворяется в бензоле, четырёххлористом углероде. Применяют его для изготовления плёнок отделочных материалов.

Полиизобутилен – каучукоподобный или жидкий эластичный материал, получаемый полимеризацией изобутилена. Он легче полиэтилена, менее прочен, обладает очень малой влаго- и газопроницаемостью, почти не стареет. Применяют его для изготовления гидроизоляционных тканей, защитных покрытий, плёнок, в качестве добавок в асфальтобетонах, вяжущего для клеев и др.

Полистирол – термопластичная смола, продукт полимеризации стирола (винилбензола). Применяют его для изготовления плит, облицовочных плиток, лаков эмалей и др.

Полиметилметакрилат (органическое стекло) – образуется в процессе полимеризации метилового эфира в результате его обработки метакриловой кислотой. В начале образуется метилметакрилат в виде бесцветной, прозрачной жидкости, а затем получают стеклообразный продукт в виде листов, трубок…Они очень стойки к воде, кислотам и щелочам. Применяют их для остекления, изготовления моделей.

Полимерные трубы.

Трубы из полимерных материалов широко применяют при строительстве напорных трубопроводов (подземных и надземных), оросительных систем, закрытого дренажа, трубчатых гидротехнических сооружений. В качестве материала для изготовления полимерных труб используют полиэтилен, винипласт, полипропилен, фторопласт.

Полиэтиленовые трубы изготавливают методом непрерывной шнековой экструзии (непрерывное выдавливание полимера из насадки с заданным профилем). Полиэтиленовые трубы морозостойки, что позволяет эксплуатировать их при температурах от –80°С до +60°С.

Полимерные мастики и бетоны.

Гидротехнические сооружения работающие в условиях агрессивной среды, действия больших скоростей и твёрдого стока, защищают специальными покрытиями или облицовками. С целью предохранения сооружений от этих воздействий, увеличения их долговечности используют полимерные мастики, полимерные бетоны, полимербетоны, полимеррастворы.

Полимерные мастики – предназначены для создания защитных покрытий, предохраняющих конструкции и сооружения от воздействия механических нагрузок, истирания, перепадов температур, радиации, агрессивной среды.

Полимерные бетоны – цементные бетоны, в процессе приготовления которых в бетонную смесь добавляют кремнийорганические или водо-растворимые полимеры. Такие бетоны имеют повышенную морозостойкость, водонепроницаемость.

Полимербетоны – это бетоны, в которых вяжущими материалами служат полимерные смолы, а заполнителем – неорганические минеральные материалы.

Полимеррастворы отличаются от полимербетонов тем, что не имеют в своём составе щебня. Их применяют в качестве гидроизоляционных, антикоррозионных и износоустойчивых покрытий гидротехнических сооружений, полов, труб.


ЛЕКЦИЯ №12

Теплоизоляционные материалы и изделия из них.

Общие сведения.

Теплоизоляционные материалы характеризуются малой теплопроводностью и небольшой средней плотностью из-за их пористой структуры. Их классифицируют по характеру строения: жёсткие (плиты, кирпич), гибкие (жгуты, полужёсткие плиты), рыхлые (волокнистые и порошкообразные); в виду основного сырья: органические и неорганические.


Органические теплоизоляционные материалы.

Опилки, стружки – применяют в сухом виде с пропиткой в конструкции известью, гипсом, цементом.

Войлок строительный изготовляют из грубой шерсти. Выпускают его в виде пропитанных антисептиком полотнищ длиной 1000…2000 мм, шириной 500…2000 мм, и толщиной 10…12 мм.

Камышит выпускают в виде плит толщиной от 30…100 мм, получаемых путём проволочного скрепления через 12-15 см рядов прессованного камыша.


Неорганические теплоизоляционные материалы.

Минеральная вата – спутанное волокно (диаметром 5…12мкм), получаемое из расплавленной массы горных пород или шлаков либо в процессе распыления её тонкой струи паром под давлением. Минеральную вату используют в качестве теплоизоляции поверхностей с температурой от –200°С до + 600°С.

Стеклянная вата - спутанное волокно, получаемое из расплавленного стекла. Её используют для приготовления теплоизоляционных изделий (матов, плит) и теплоизоляции поверхностей.

Пеностекло – пористый лёгкий материал, получаемый путём спекания смеси стекольного порошка с газообразователями (известняком, каменным углём). Изготавливают его с открытыми и закрытыми порами. Плиты из пеностекла применяют для теплоизоляции стен, покрытий, перекрытий, утепления полов.


ЛЕКЦИЯ №12а

Гидроизоляционные и кровельные материалы на основе битумов и полимеров.

Общие сведения.

Один из важных вопросов в строительстве – защита зданий и сооружений от воздействия атмосферных осадков, окружающей влажной среды, напорных и безнапорных вод. Во всех этих случаях основную роль играют гидроизоляционные и кровельные материалы, которые предопределяют долговечность зданий и сооружений. Гидроизоляционные и кровельные материалы подразделяют на эмульсии, пасы, мастики. В зависимости от входящих в состав гидроизоляционных и кровельных материалов вяжущих веществ их подразделяют на битумные, полимерные, полимерно-битумные.


Гидроизоляционные материалы.

Эмульсии – дисперсные системы, состоящие из двух не смешивающихся между собой жидкостей, одна из которых находится в другой в мелко раздробленном состоянии. Для приготовления эмульсии применяют слабые водные растворы поверхностно-активных веществ или тонкодисперсные твёрдые порошки – эмульгаторы, которые понижают поверхностное натяжение между битумом и водой, способствуя более мелкому его раздроблению. В качестве эмульгаторов используют олеиновую кислоту, концентраты сульфитно-спиртовой барды, асидол. Эмульсии используют в качестве грунтовок и покрытий, наносят в холодном состоянии на сухую или сырую поверхность послойно.

Пасты приготовляют из смеси эмульгированного битума и тонкомолотых минеральных порошков (негашёной или гашёной извести, высокопластичных или пластичных глин). Применяют их в качестве грунтовок и покрытий для внутренних слоёв гидроизоляционного ковра.


Кровельные материалы.

Пергамин – беспокровный материал, получаемый путём пропитки кровельного картона мягкими нефтяными битумами. Применяют его как подкладочный материал.

Толь – получают путём пропитки кровельного картона каменноугольными или сланцевыми дегтёвыми материалами и последующей посыпки его одной или двух сторон минеральным порошком. Используют его при устройстве кровель.


ЛЕКЦИЯ №13

Древесные строительные материалы и изделия.

Общие сведения.

Благодаря хорошим строительным свойствам древесина давно нашла широкое применение в строительстве. Она имеет небольшую среднюю плотность до 180 кг/м 3 , достаточную прочность, малую теплопроводность, большую долговечность (при правильной эксплуатации и хранении), легко обрабатывается инструментом, химически стойка. Однако с наряду с большими достоинствами древесина имеет и недостатки: неоднородность строения; способность поглощать и отдавать влагу, изменять при этом свои размеры, форму и прочность; Быстро разрушается от гниения, легко возгорается.

По породе деревья подразделяют на хвойные и лиственные. Качество древесины во многом зависит от наличия у неё пороков, к которым относят косослой, сучковатость, трещины, повреждения насекомыми, гниль. Хвойные – лиственница, сосна, ель, кедр, пихта. Лиственные – дуб, берёза, липа, осина.

Строительные свойства древесины изменяются в широких пределах, в зависимости от её возраста, условий роста, породы дерева, влажности. В свежесрубленном дереве влаги – 35…60%, причём содержание её зависит от времени рубки и породы дерева. Наименьшее содержание влаги в дереве зимой, наибольшее – весной. Наибольшая влажность свойственна хвойным породам (50-60%), наименьшая – твёрдым лиственным породам (35-40%). Высыхая от самого влажного состояния до точки насыщения волокон (до влажности 35%) древесина не меняет своих размеров, при дальнейшем высушивании её линейные размеры уменьшаются. В среднем усушка вдоль волокон составляет 0,1%, а поперёк – 3…6%. В результате объёмной усушки образуются щели в местах соединения деревянных элементов, древесина трескается. Для деревянных конструкций следует применять древесину той влажности, при которой она будет работать в конструкции.


Материалы и изделия из древесины.

Круглый лес : брёвна – длинные отрезки ствола дерева, очищенные от сучьев; кругляк (подтоварник) – брёвна длиной 3…9м; кряжи – короткие отрезки ствола дерева (длиной 1,3…2,6м); брёвна для свай гидротехнических сооружений и мостов – отрезки ствола дерева длиной 6,5…8,5м. Влажность круглого леса, используемого для несущих конструкций должна быть не более 25%.

Пиломатериалы получают путём распиловки круглого леса. Пластины – это продольно распиленные на две симметричные части брёвна; брусья имеют толщину и ширину не более 100мм (четырехотрезные и двухкантные); горбыль представляет отпиленную наружную часть бревна, у которого одна сторона не обработана.


Строганные длинномерные изделия – это наличники (оконных и дверных проёмов), плинтуса, половая доска или брус, поручни для перил, лестниц, подоконные доски изготавливают их из хвойных и лиственных пород.

Фанеру изготавливают из шпона (тонкой стружки) берёзы, сосны, дуба, липы др. пород путём склеивания его листов между собой. Шпон получают непрерывным снятием стружки по всей длине распаренного в кипятке бревна (длиной 1,5 м) на спец. станке.

Столярные изделия изготовляют на специализированных заводах или в цехах из хвойных и лиственных пород. К ним относят оконные и дверные блоки различной формы, дверные полотна, перегородки и панели.

Клееные конструкции в виде балок, рам, стоек, свай, ограждений применяют в покрытиях, перекрытиях и др. элементах зданий. Изготовляют их путём склейки водостойкими клеями досок, брусков, фанеры. (Водостойкий клей ФБА, ФОК).

ЛЕКЦИЯ №14

Отделочные материалы.

Общие сведения.

Отделочные материалы используют для создания покрытий поверхностей строительных изделий, конструкций и сооружений в целях защиты их от вредного внешнего воздействия, придания им эстетической выразительности, улучшения гигиенических условий в помещении. К отделочным материалам относят готовые красочные составы, вспомогательные материалы, связующие, рулонные отделочные материалы, пигменты. Красочные составы состоят из пигмента, придающего им цвет; наполнителя, экономящего пигмент, улучшающего механические свойства и увеличивающего долговечность окраски; связующего, соединяющего частицы пигмента и наполнителя между собой и с окрашиваемой поверхностью. После высыхания красочные составы образуют тонкую плёнку. Кроме основных компонентов, при необходимости в красочные составы вводят разбавители, загустители и другие добавки.


Пигменты.

Пигменты – это тонко измельченные цветные порошки, не растворимые в воде и органических растворителях, но способные равномерно смешиваться с ними, передавая красочному составу свой цвет.

Белые пигменты. К ним относят мел, воздушную строительную известь. Мел используют в виде тонко измельченного порошка, из которого приготавливают различные водо-разбавляемые (водные) красочные составы, грунтовки, шпатлёвки и пасты.

Известь воздушную строительную используют в качестве пигмента и связующего материала для приготовления красочных составов, шпатлёвок и мастик.

Чёрные пигменты. К ним относят сажу газовую канальную, двуокись марганца, чернь.

Сажа газовая канальная образуется при сжигании различных масел, нефти, смолы при ограниченном доступе воздуха. Используют её для приготовления неводных красочных составов.

Двуокись марганца встречается в природе в виде минерала и пиролюзита. Используют её для приготовления водных и неводных красочных составов.

Чернь получают при прокаливании без доступа воздуха ореховой скорлупы, древесины, торфа.

Серые пигменты. К ним относят графит и цинковую пыль.

Графит – природный материал серовато-чёрного цвета с жирным металлическим блеском. Его используют для приготовления красочных составов и натирки поверхности железных предметов, подвергающихся нагреванию, отчего она получает вид полированной.

Цинковая пыль – механическая смесь окиси цинка с металлическим цинком. Её используют для приготовления неводных красочных составов.

Красные пигменты. К ним относят сурик железный сухой, мумию природную и искус.

Сурик железный сухой получают из железной руды, содержащей окись железа. Это очень прочный пигмент с высокими антикоррозионными свойствами и светостойкостью. Выпускают его в виде тонко измельченного порошка кирпично-красного цвета и используют для приготовления клеевых составов, эмалей и масляных красок.

Мумия природная - тонко измельченная глина, окрашенная окислами железа в коричнево-красный цвет различных оттенков. Используют для приготовления водных и неводных красочных составов.

Мумия искусственная - тонко измельченный порошок керамического изделия ярко-красного цвета.

Жёлтые пигменты. К ним относят охру сухую, крон свинцовый сухой и сиену природную.

Охру сухую получают из глины, окрашенной окислами железа. Используют для приготовления всех видов красок, применяемых при окрашивании деревянных и металлических поверхностей.

Сиену природную получают из глины, содержащей большое количество окиси железа (70%) и кремнезёма.

Зелёные, синие, коричневые и др. пигменты.


Олифы и эмульсии.

Олифу натуральную льняную и конопляную получают соответственно из льняного и конопляного сырого масла путём варки его при 200…300°С и обработки воздухом с введением ускорителя высыхания (сиккатива). Используют её для приготовления красочных составов, грунтовок и в качестве самостоятельного материала для малярных работ при наружной и внутренней окраске деревянных и металлических конструкций.

Эмульсия ВМ состоит из натуральной олифы, бензола, животного плиточного клея, известкового 50%-ного теста и воды. Используют её для разведения густотёртых красок.

Эмульсия МВ приготавливают из смеси 10%-ного раствора животного клея, щёлочи (соды, буры, поташа) и натуральной олифы. Применяют её при окрашивании внутри помещений штукатурки, древесины.

Лакокрасочные составы.

Масляные краски – различные белила и цветные красочные составы, приготовленные на натуральных или комбинированных олифах с различными добавками, доведённые до малярной консистенции.


ЛЕКЦИЯ №15

Металлы и металлические изделия.

Общие сведения.

В водохозяйственном строительстве широко применяют различные материалы в виде металлопроката и металлических изделий. Металлопрокат используют при строительстве насосных станций, производственных зданий, изготовлении металлических затворов различного типа. Металлы, применяемые в строительстве, делят на две группы: чёрные (железо и сплавы) и цветные. В зависимости от содержания углерода чёрные металлы подразделяют на чугун и сталь.

Чугун – железоуглеродистый сплав с содержанием углерода от 2% до 6,67%. В зависимости от характера металлической основы он делится на четыре группы: серый, белый, высокопрочный и ковкий.

Серый чугун – содержит 2,4…3,8% углерода. Он хорошо поддаётся обработке, имеет повышенную хрупкость. Его используют для литья изделий, не подвергающихся ударным воздействиям.

Белый чугун – содержит 2,8…3,6% углерода, обладает высокой твёрдостью, однако он хрупок, не поддаётся обработке, имеет ограниченное применение.

Высокопрочный чугун получают присадкой в жидкий чугун магния 0,03…0,04% он имеет тот же химический состав что и серый чугун. Он имеет наиболее высокие прочностные свойства. Его применяют для отливки корпусов насосов, вентилей.

Ковкий чугун – получают длительным нагревом при высоких температурах отливок из белого чугуна. Он содержит 2,5…3,0% углерода. Его применяют для изготовления тонкостенных деталей (гайки, скобы…). В водохозяйственном строительстве применяют чугунные плиты – для облицовки поверхностей гидротехнических сооружений, подвергающихся истиранию наносами, чугунные водопроводные задвижки, трубы.

Стали – получают в результате переработки белого чугуна в мартеновских печах. С увеличением в сталях содержания углерода повышается их твёрдость и хрупкость, в то же время понижается пластичность и ударная вязкость.

Механические и физические свойства сталей значительно улучшаются при добавлении в них легирующих элементов (никеля, хрома, вольфрама). В зависимости от содержания легирующих компонентов стали делятся на четыре группы: углеродистые (легирующие элементы отсутствуют), низколегированные (до 2,5% легирующих компонентов), среднелегированные (2,5…10% легирующих компонентов), высоколегированные (более 10% легирующих компонентов).

Углеродистые стали в зависимости от содержания углерода подразделяют на низкоуглеродистую (углероды до 0,15%), среднеуглеродистую (0,25…0,6%) и высокоуглеродистую (0,6…2,0%).

К цветным металлам и сплавам относят алюминий, медь и их сплавы (с цинком, оловом, свинцом, магнием), цинк, свинец.

В строительстве используют лёгкие сплавы – на основе алюминия или магния, и тяжёлые сплавы - на основе меди, олова, цинка, свинца.


Стальные строительные материалы и изделия.

Горячекатаные стали выпускают в виде равнополочного уголка (с полками шириной 20…250 мм); неравнополочного уголка; двутавровой балки; двутавровой широкополочной балки; швеллера.

Для изготовления металлических строительных конструкций и сооружений используют прокатные стальные профили: равнополочный и неравнополочный уголки, швеллер, двутавр, и тавр. В качестве крепёжных изделий из стали применяют заклёпки, болты, гайки, винты и гвозди. При выполнении строительно-монтажных работ применяют различные способы обработки металлов: механическую, термическую, сварку. К основным способам производства металлических работ относится механическая горячая и холодная обработка металлов.

При горячей обработке металлы нагревают до определённых температур, после чего им придают соответствующие формы и размеры в процессе проката, под воздействием ударов молота или давлении пресса.

Холодную обработку металлов подразделяют на слесарную и обработку металлов резанием. Слесарная и обработка состоит из следующих технологических операций: разметки, рубки, резки, отливки, сверления, нарезки.

Обработку металлов, резание осуществляют путём снятия металлической стружки режущим инструментом (точение, строгание, фрезерование). Её производят на металлорежущих станках.

Для улучшения строительных качеств стальных изделий их подвергают термической обработке – закалке, отпуску, отжигу, нормализации и цементации.

Закалка заключается в нагреве стальных изделий до температуры, несколько выше критической, некоторой выдержке их при этой температуре и в последующем быстром охлаждении их в воде, масле, масляной эмульсии. Температура нагрева при закалке зависит от содержания в стали углерода. При закалке увеличивается прочность и твёрдость стали.

Отпуск заключается в нагреве закалённых изделий до 150…670°С (температура отпуска), выделке их при этой температуре (в зависимости от марки стали) и последующем медленном или быстром охлаждении в спокойном воздухе, воде ил в масле. В процессе отпуска повышается вязкость стали, уменьшается внутреннее напряжение в ней и её хрупкость, улучшается её обрабатываемость.

Отжиг заключается в нагреве стальных изделий до определённой температуры (750…960°С), выдержке их при этой температуре и последующем медленном охлаждении в печи. При отжиге стальных изделий понижается твёрдость стали, также улучшается её обрабатываемость.

Нормализация - заключается в нагреве стальных изделий до температуры несколько более высокой, чем температура отжига, выдержке их при этой температуре и последующем охлаждении в спокойном воздухе. После нормализации получается сталь с более высокой твёрдостью и мелкозернистой структурой.

Цементация – это процесс поверхностного науглероживания стали с целью получения у изделий высокой поверхностной твёрдости, износостойкости и повышенной прочности; при этом внутренняя часть стали сохраняет значительную вязкость.


Цветные металлы и сплавы.

К ним относятся: алюминий и его сплавы – это лёгкий, технологичный, коррозионно- стойкий материал. В чистом виде его используют для изготовления фольги, отливки деталей. Для изготовления алюминиевых изделий используют алюминиевые сплавы – алюминиево-марганцевый, алюминиево-магниевый…Применяемые в строительстве алюминиевые сплавы при незначительной плотности (2,7…2,9 кг/см 3), имеют прочностные характеристики, которые близки к прочностным характеристикам строительных сталей. Изделия из алюминиевых сплавов характеризуются простотой технологии изготовления, хорошим внешним видом, огне- и сейсмостойкостью, антимагнитостью, долговечностью. Такое сочетание строительно-технологических свойств у алюминиевых сплавов позволяет им конкурировать со сталью. Использование алюминиевых сплавов в ограждающих конструкциях позволяет уменьшить вес стен и кровли в 10…80 раз, сократить трудоёмкость монтажа.

Медь и её сплавы . Медь – это тяжёлый цветной металл (плотностью 8,9 г/см 3), мягкий и пластичный с высокой тепло- и электропроводностью. В чистом виде медь используют в электрических проводах. В основном медь применяют в сплавах различных видов. Сплав меди с оловом, алюминием, марганцем или никелем называют бронзой. Бронза – это коррозионно-стойкий металл, обладающий высокими механическими свойствами. Применяют её для изготовления санитарно-технической арматуры. Сплав меди с цинком (до 40%) называют латунью. Она обладает высокими механическими свойствами и коррозионной стойкостью, хорошо поддаётся горячей и холодной обработке. Её применяют в виде изделий, листов, проволоки, труб.

Цинк – это коррозионно-стойкий металл, применяемый в качестве антикоррозионного покрытия при оцинковывании стальных изделий в виде кровельной стали, болтов.

Свинец – это тяжёлый, легкообрабатываемый, коррозионно-стойкий металл, применяемый для зачеканивания швов раструбных труб, герметизации деформационных швов, изготовления специальных труб.


Коррозия металла и защита от неё.

Воздействие на металлические конструкции и сооружения окружающей среды приводит к их разрушению, которое называется коррозией. Коррозия начинается с поверхности металла и распространяется в глубь него, при этом металл теряет блеск, поверхность его становится неровной, изъеденной.

По характеру коррозионных разрушений различают сплошную, избирательную и межкристаллитную коррозию.

Сплошную коррозию подразделяют на равномерную и неравномерную. При равномерной коррозии разрушение металла протекает с одинаковой скоростью по всей поверхности. При неравномерной коррозии разрушение металла протекает с неодинаковой скоростью на различных участках его поверхности.

Избирательная коррозия охватывает отдельные участки поверхности металла. Её подразделяют на поверхностную, точечную, сквозную, и коррозию пятнами.

Межкристаллитная коррозия проявляется внутри металла, при этом разрушаются связи по границам кристаллов, составляющих металл.

По характеру взаимодействия металла с окружающей средой различают химическую и электрохимическую коррозию. Химическая коррозия возникает при действии на металл сухих газов или жидкостей не электролитов (бензина, масла, смол). Электрохимическая коррозия сопровождается появлением электрического тока, возникающего при действии на металл жидких электролитов (водных растворов солей, кислот, щелочей), влажных газов и воздуха (проводников электричества).

Для предохранения металлов от коррозии применяют различные способы их защиты: герметизацию металлов от агрессивной среды, уменьшения загрязнённости окружающей среды, обеспечение нормальных температурно-влажностных условий, нанесение долговечных антикоррозионных покрытий. Обычно с целью защиты металлов от коррозии их покрывают лакокрасочными материалами (грунтовками, красками, эмалями, лаками), защищают коррозионно-стойкими тонкими металлическими покрытиями (оцинковывание, алюминиевые покрытия и др.). Кроме этого, металл от коррозии защищают легированием, т.е. путём плавления его с другим металлом (хром, никель и др.) и неметаллом.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Похожие публикации