Интернет-журнал дачника. Сад и огород своими руками

В промышленности металл калий получают. Большая энциклопедия нефти и газа

(Kalium) K, химический элемент 1 (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 19, атомная масса 39,0983. Состоит из двух стабильных изотопов 39 K (93,259%) и 41 K (6,729%), а также радиоактивного изотопа 40 K с периодом полураспада ~10 9 лет. Этот изотоп играет в природе особую роль. Его доля в смеси изотопов составляет всего 0,01%, однако именно он является источником практически всего содержащегося в земной атмосфере аргона 40 Ar, который образуется при радиоактивном распаде 40 K. Кроме того, 40 K присутствует во всех живых организмах, что, возможно, оказывает определенное влияние на их развитие.

Изотоп 40 K служит для определения возраста горных пород калий-аргоновым методом. Искусственный изотоп 42 K с периодом полураспада 15,52 года используется в качестве радиоактивного индикатора в медицине и биологии.

Степень окисления +1.

Соединения калия известны с древних времен. Поташ – карбонат калия K 2 CO 3 – издавна выделяли из древесной золы.

Металлический калий был получен электролизом расплавленного едкого кали (KOH) в 1807 английским химиком и физиком Гемфри Дэви. Название «potassium», выбранное Дэви, отражает происхождение этого элемента из поташа. Латинское название элемента образовано от арабского названия поташа – «аль-кали». В русскую химическую номенклатуру слово «калий» введено в 1831 петербургским академиком Германом Гессом (1802–1850).

Фигуровский Н.А. Открытие элементов и происхождение их названий . М., Наука, 1970
Популярная библиотека химических элементов . Под. ред. И.В.Петрянова-Соколова М., 1983
Greenwood N.N., Earnshaw A. Chemistry of the Elements , Oxford: Butterworth, 1997

Найти "КАЛИЙ " на

Калием называется элемент, находящийся в периодической системе Менделеева под 19-ым номером. Вещество принято обозначать заглавной буквой К (от латинского Kalium). В русской химической номенклатуре настоящее название элемента появилось благодаря Г.И. Гессу в 1831 году. Изначально калий называли «аль-кали», что в переводе с арабского означает «зола растений». Именно едкий кали стал материалом для самого первого получения вещества. Едкий кали, в свою очередь, добывался из поташа, который являлся продуктами горения растений (карбонат калия). Его первооткрывателем стал Х. Дэви. Стоит отметить, что карбонат калия является прототипом современного моющего средства. Позже он использовался для удобрений, используемых в сельском хозяйстве, в производстве стекла и других целей. В настоящее поташ - это пищевая добавка, прошедшая официальную регистрацию, а калий научились добывать совершенно другими путями.

В природе калий можно обнаружить только в виде соединений с другими элементами (например, морская вода, или минералы), свободный его вид не встречается вообще. Он способен в достаточно короткий промежуток времени окисляться на открытом воздухе, а также вступать в химические реакции (например, при взаимодействии калия с водой, образуется щелочь).

Таблица 1.Запасы калийных солей (млн т в пересчете на к2о) и среднее содержание к2о в рудах, %
Страна, часть света Запасы общие Запасы подтвержденные Их % от мира Среднее содержание
1 2 3 4 5
Россия 19118 3658 31,4 17,8
Европа 3296 2178 18,5 -
Беларусь 1568 1073 9,1 16
Великобритания 30 23 0,2 14
Германия 1200 730 6,2 14
Испания 40 20 0,2 13
Италия 40 20 0,2 11
Польша 10 10 0,1 12
Украина 375 292 2,5 11
Франция 33 10 0,1 15
Азия 2780 1263 10,8 -
Израиль 600 44 0,4 1,4
Иордания 600 44 0,4 1,4
Казахстан 102 54 0,5 8
Китай 320 320 2,7 12
Таиланд 150 75 0,6 2,5
Туркменистан 850 633 5,4 11
Узбекистан 159 94 0,8 12
Африка 179 71 0,6 -
Конго 40 10 0,1 15
Тунис 34 19 0,2 1,5
Эфиопия 105 42 >0,4 25
14915 4548 38,7 -
Аргентина 20 15 0,1 12
Бразилия 160 50 0,4 15
Канада 14500 4400 37,5 23
Мексика 10 - 0 12
США 175 73 0,6 12
Чили 50 10 0,1 3
Итого: 40288 11744 100 -

Описание калия

Калий в виде простого вещества представляет собой щелочной металл. Для него характерен серебристо-белый окрас. На свежей поверхности моментально появляется блеск. Калий является мягким металлом, легко поддающимся плавлению. Если вещество или его соединения поместить в пламя горелки, то огонь приобретет розово-фиолетовый цвет.

Физические свойства калия

Калий очень мягкий металл, который легко разрезать обычным ножом. Его твердость по Бринеллю составляет 400 кн/м 2 (или 0,04 кгс/мм 2). Он имеет объемноцентрированную кубическую кристаллическую решетку (5=5,33 А). Его плотность составляет 0,862 г/см 3 (20 0 С). Вещество начинает плавиться при температуре в 63,55 0 С, закипать - при 760 0 С. Имеет коэффициент термического расширения, который равняется 8,33*10 -5 (0-50 0 С). Его удельная теплоемкость при температуре в 20 0 С составляет 741,2 дж/(кг*К) или же 0,177 кал/(г* 0 С). При той же температуре имеет удельное электросопротивление, равное 7,118*10 -8 ом*м. Температурный коэффициент электросопротивления металла составляет 5,8*10 -15 .

Калий образует кристаллы кубической сингонии, пространственная группа I m3m, параметры ячейки a = 0,5247 нм, Z = 2.

Химические свойства

Калий является щелочным металлом. В связи с этим, металлические свойства калия проявляются типично, так же, как и других подобных металлов. Элемент проявляет свою сильную химическую активность, а кроме этого, также выступает в роли сильного восстановителя Как уже говорилось выше, металл активно вступает в реакцию с воздухом, о чем свидетельствует появление пленок на его поверхности, в результате чего его цвет становится тусклым. Данную реакцию можно наблюдать невооруженным глазом. Если калий на протяжении достаточно длительного времени контактирует с атмосферой, то есть вероятность его полного разрушения. При вступлении в реакцию с водой, происходит характерный взрыв. Это связано с выделяющимся водородом, который воспламеняется характерным розовато-фиолетовым пламенем. А при добавлении в воду, реагирующую с калием фенолфталеина, она приобретает малиновый цвет, который свидетельствует о щелочной реакции образующегося гидроксида калия (КОН).

При взаимодействии металла с такими элементами, как Na, Tl, Sn, Pb, Bi, образуются интерметаллиды

Указанные характеристики калия говорят о необходимости соблюдений определенных правил безопасности и условий во время хранения вещества. Так, вещество следует покрывать слоем бензина, керосина или силикона. Это делается для полного исключения его контакта с воздухом или водой.

Стоит отметить, что в условиях комнатной температуры металл вступает в реакцию с галогенами. Если его немного нагреть, то он легко взаимодействует с серой. В случае же увеличения температуры, калий способен соединяться с селеном и теллуром. Если повысить температуру более 200 0 С в атмосфере водорода, то образуется гидрид КН, который способен воспламеняться без посторонней помощи, т.е. самостоятельно. Калий совершенно не взаимодействует с азотом, даже если для этого создать надлежащие условия (повышенные температуру и давление). Однако, контактировать эти два вещества можно заставить, повлияв на них электрическим разрядом. В данном случае получится азид калия KN 3 и нитрид калия K 3 N. Если нагреть вместе графит и калий, то в результате получатся карбиды KC 8 (при 300 °С) и KC 16 (при 360 °C).

При взаимодействии калия и спиртов получаются алкоголяты. Кроме этого, калий делает существенно быстрее процесс полимеризации олефинов и диолефинов. Галогеналкилы и галогенарилы вместе с девятнадцатым элементом в результате дают калийалкилы и калийарилы.

Таблица 2. Химические свойства калия
Характеристика Значение
Свойства атома
Название, символ, номер Калий / Kalium (K), 19
Атомная масса (молярная масса) 39,0983(1) а. е. м. (г/моль)
Электронная конфигурация 4s1

Радиус атома

235 пм
Химические свойства
Ковалентный радиус 203 пм
Радиус иона 133 пм
Электроотрицательность 0,82 (шкала Полинга)
Электродный потенциал −2,92 В
Степени окисления 0; +1

Энергия ионизации (первый электрон)

418,5 (4,34) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,856 г/см³
Температура плавления 336,8К; 63,65 °C
Температура кипения 1047К; 773,85 °C
Уд. теплота плавления 2,33 кДж/моль
Уд. теплота испарения 76,9 кДж/моль
Молярная теплоёмкость 29,6 Дж/(K·моль)
Молярный объём 45,3 см³/моль
Кристаллическая решётка простого вещества
Структура решётки Кубическая объёмно-центрированная
Параметры решётки 5,332 Å
Температура Дебая 100 K

Электронное строение атома калия

Калий имеет положительно заряженное ядро атома (+19). В середине этого атома присутствуют 19 протонов и 19 нейтронов, которые окружаются четырьмя орбитами, где в постоянном движении находятся 19 электронов. Электроны распределены на орбиталях в следующем порядке:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 .

На внешнем энергетическом уровне атома металла находится всего 1 валентный электрон. Это объясняет тот факт, что абсолютно во всех соединениях калий имеет валентность 1. В отличие от лития и натрия, данный электрон располагается на более удаленном расстоянии от ядра атома. Это является причиной повышенной химической активностью калия, чего нельзя сказать об упомянутых двух металлах. Таким образом, внешняя электронная оболочка калия представлена следующей конфигурацией:

Не смотря на присутствие вакантных 3p - и 3d -орбиталей, возбужденное состояние отсутствует.

С помощью воронки и стеклянной палочки насыпьте внутрь баллончика-реактора опилки алюминия, затем щелочь, закройте отверстие кусочком скотча и встряхните содержимое. Далее присоединяем приемник. Его нижнее отверстие (для выхода водорода) должно быть закрыто гвоздем. Аккуратно подмазывают стык реактора и приемника кашицей алебастра (берите его совсем чуть-чуть). Выждав 5 минут, сушим соединение феном около 4-5 минут.

Теперь аккуратно наворачиваем влажную вату на жесть приемника, отступив от краев 5-8 мм, и закрепляем ее тонкой проволокой.

Вначале удаляем гвоздь-затычку. Затем понемногу прогреваем баллончик с реакционной смесью горелкой (можно для экономии пользоваться паяльной лампой).

Для нагрева я использовал бутановый баллончик и большую горелку-насадку, упомянутую выше. Горючий газ внутри баллончика охлаждается, и со временем пламя немного уменьшается, поэтому пришлось согревать бутановый баллончик рукой.

Следите, чтобы половина "реторты" была нагрета до оранжевого каления, горло приемника должно быть нагрето до начала красного каления. Грейте около 13-14 минут. Реакция вначале сопровождается появлением фиолетового пламени, выходящего из приемника, потом оно постепенно уменьшается и пропадает, тогда можно уменьшить отверстие, вставив гвоздь (неплотно и с зазором) . В ходе реакции понемногу смачивайте вату пипеткой, не допуская попадания воды на стыки.

Прекратив нагрев, плотно вставьте затычку. Дайте прибору остыть до комнатной температуры! Я просто вынес его на мороз. Затем удаляем вату, и стираем следы воды.

Заранее подготовьте место, где будете выскребать калий из приемника. Помните об опасности возгорания! У Вас должен быть бензин, пинцет, самодельный шпатель-скребок, емкость для хранения калия с инертной жидкостью, вроде керосина или масла. Желательно, чтобы жидкость была высушена. Соскребаем гипс и разнимаем приемник. Сразу на горло приемника надеваем кусок полиэтилена и придавливаем его пластилином (или заранее сделайте пробочку). Размыкаем половинки приемника, основная часть калия сконденсировалась в левой части (которая была присоединена горлышком к реактору), внутри правой части были лишь следы калия (строение приемника показано на фотографии ). В левую часть налейте бензин (я использовал гексан). Делается это для защиты металла от окисления (бензин хорош тем, что потом он испарится бесследно, и можно будет опять использовать холодильник, не нарушая гипсовую замазку). Операцию проводят в защитных очках!

Шпателем соскребите металл со стенок, потом пинцетом поместите его в емкость для хранения. Помните, маленькие стружки калия окисляются на воздухе так быстро, что могут воспламениться. Это легко увидеть, если тщательно расплющить ножом обсушенный кусочек калия на куске бумаги (лучше фильтровальной или туалетной) - калий обычно воспламеняется. Часть металла получится в виде небольших стружек и крупинок. Их можно собрать смыв бензином в емкость для хранения или сухой стаканчик. Они пригодятся для реакции с водой: даже небольшие крупинки горят красивыми фиолетовыми огоньками.

Мне удалось собрать в бюкс около 1.1 г калия (0.7-0.8 г в виде компактной массы). Всего образовалось где-то 1.3 г металла. Часть калия в виде остатков я собирать не стал, промокнул бумагой от гексана и пинцетом перенес в воду (удобно просто стряхивать крупинки с бумаги). После реакции нужно удалить следы металла с приемника, правую половину ("дно") просто бросьте в воду на вытянутой руке и сразу отойдите. Левая половина пусть полежит на воздухе, пока следы калия частично окислятся, потом удалите их с помощью влажной ваты на проволоке (не повредив гипсовой замазки). Затем промойте приемник пипеткой и просушите его салфеткой (осторожно, не направляйте отверстие на себя).

0,12 грамма убивают человека за 5 часов. Так действует цианистый калий . Один из самых сильны ядов – это соль циановодородной кислоты. Ее еще называют синильной. В состав вещества входит 19-ый элемент . Однако, чистый калий – благо для организма, а не его убийца.

Даже ребенку в день требуется минимум 600 миллиграммов элемента. Иначе, нарушается работа мускулатуры, в том числе и сердечной. Возникают судороги, может развиться невралгия.


Восполнить дефицит удается, употребляя курагу, морепродукты, орехи, цитрусовые, бананы. Подвигайте эти продукты поближе и продолжайте знакомство с элементом №19.

Химические и физические свойства калия

Название элементу дало одно из его соединений, известное с древности, — карбонат калия . Арабы именовали его «аль-кали» и использовали при стирке одежды. Реагируя с водой, соли калия «рождают» щелочную среду. В ней очищают ткани и поныне.

С веками карбонату нашли и иное применение. Вещество стало пищевым стабилизатором. Как выполняет эту роль калий? Вода и масло, к примеру, не смешиваются. Но, в присутствии карбоната получить однородный состав, все же, удается. На упаковке будет отмечено «Е501».

У калия масса соединений. 19-ый элемент включен в первую группу периодической системы, а в ней лишь щелочные металлы. Все они имеют на внешнем электронном уровне лишь 1 электрон.

Это делает элементы активными восстановителями. Электронная формула калия четырехслойная. Поэтому, металл находится в 4-ом периоде таблицы Менделеева. То есть, внешний электрон удален от ядра и легко отсоединяется, замещается.

В чистом виде калий – вещество твердое и, при этом, легкое. Плотность элемента равна лишь 0,06 грамма на кубический сантиметр. Невелика и атомная масса – 39, 098 граммов на моль. Кстати, в калии только и есть, что атомы. Именно они формируют кристаллическу решетку. Молекул простое вещество не формирует.


Масса калия невелика, как и большинство показателей металла. Он даже твердостью похвастаться не может, хоть агрегатное состояние вещества в обычных условиях и таково. По элементу дают меньше 1-го балла.

Калий без труда режется ножом, словно это не металл, а сыр. Не сложно и расплавить вещество. Достаточно нагрева до 63,5 градусов. Добиться кипения сложнее, нужен показатель 700 по шкале Цельсия.

Будучи металлом, элемент имеет характерный . Цвет вещества серебристо-белый, с сероватым отливом. Если рядом вода, любоваться слитками лучше на расстоянии.

Погружаясь в жидкость, калий взрывается. Легко металл реагирует и с кислородом, моментально окисляясь. Особых условий для этого не надо. Требуется лишь атмосфера и калий.

Какой итог реакции металла с кислородом? Образуется оксид 19-го элемента. Образуется и пламя. Загораясь на воздухе, калий вспыхивает фиолетовым. Реакция является одним из способов идентификации щелочного металла.

Кислород – один из галогенов, то есть элементов 17-ой группы таблицы Менделеева. Калий легко реагирует с каждым из них по принципу присоединения. Вещества объединяются в одно. Так получаются хлорид калия , йодит , бромид, фторид и не только. Присоединение всегда происходит при повышенных температурах.

Во взаимодействие 19-ый элемент вступает и с некоторыми сложными веществами. Это не только вода. Реагировать с металлом может и любая кислота. Калий вытесняет из вещества атомы гидрогена. Так, от смешивания с соляной кислотой «рождается» водород и хлорид. Реакция проходит в обычных условиях.

Взаимодействие с оксидами возможно лишь при повышенных температурах. Большинство реакций протекают по схеме обмена. Здесь-то и проявляются восстановительные свойства калия. Реакция с оксидом купрума, к примеру, дает оксид уже 19-го элемента и чистый купрум.

По принципу восстановления проходит, так же, взаимодействие с солями. Если в них включены менее активные с химической точки зрения элементы, калий замещает их атомы. В итоге, добываются чистые металлы. Так, соединение с хлоридом дает алюминий уже в чистом виде.


С гидроксидами металлов реакции происходят лишь в том случае, если они располагаются правее калия в ряду электрохимической активности. Возьмем для примера барий, точнее, его гидроксид. Союз с 19-ым элементом гарантирует наличие уже гидроксида калия . Барий освободится.

Применение калия

Калий нужен не только организму людей, но их промышленности. Цианид металла закупают золотодобытчики. Реагент помогает им извлекать драгоценные элементы из руды. Облегчается получение не только , но и серебра.

В сфере нефтедобычи пригождается формиат металла. Он служит жидкостью для добуривания скважин, то есть, используется раствор калия . Фтористый металл применяется в металлургии в качестве . Так промышленники называют добавки, снижающие температуру плавления. Флюсы, так же, облегчают отделение от металла пустой породы, шлаков.

На атомных станциях присутствует тетрафторобромат калия. Без него не получить гексафторид урана. Он является стадией отделения урана от примесей редкоземельных элементов. С помощью калия получают, так же, фториды , рения и Без них атомная промышленность не обходится.

В стекольной промышленности нашел место углекислый калий. Небольшие добавки вещества улучшают оптические свойства продукции. Углекислая форма металла идет и на мыловарение. В пиротехнических содержится хлорат 19-го элемента, а в бытовой химии – фосфат.


Сульфат калия – популярное удобрение для растений. Вообще, примерно 90% добываемых солей 19-го металла идут именно на производство подкормок. Они ускоряют рост культур, увеличивают урожайность, провоцируют пышное цветение. Так, вместо сульфата можно выбрать нитрат калия . Кроме удобрения он котируется, как пищевая добавка, усилитель вкуса.

Элемент не упустили и поля зрения медики. Оротат калия – лекарство, применяемое при заболеваниях желчных путей и печени. Перманганат калия – антисептик. Калий-магний – дуэт, включенный в «Панангин». Он восполняет дефицит обоих элементов.

Лучше всего металлы усваиваются в паре. Если соединить в препарате натрий и калий , можно отладить в организме проведение нервных импульсов. Так что, сфер применения 19-го элемента масса. На руку человечеству то, что калий не является редкостью.

Добыча калия

В природе наиболее часто встречаются соли калия . Больше всего их в России, на Урале. Не зря один из городов региона назван Соликамском. Крупные месторождения разрабатываются и в Белоруссии. Третьи по величине запасы калия в мире обнаружены 10 лет назад в Бразилии.

Если нужно выделить чистый металл, ископаемые смешивают с жидким натрием. Работает и электролиз хлорида калия. Ток проводят в его смеси с карбонатом 19-го элемента при температуре около 800-от градусов Цельсия.

После реакции калий требует очистки. Помогает вакуумная дистилляция. Порой, электролизу подвергают гидроксид калия. Метод не распространен. Трудно соблюсти технику безопасности. Не устраивает промышленников и выход по току.

Цена калия

На биржах цветных металлов за 19-ый элемент просят не менее 1 000 долларов США. Это ценник за тонну металла. На соединения калия стоимость разнится. Все зависит от востребованность вещества, объемов поставок. Калиевую селитру, к примеру, продают по 60-75 рублей за килограмм.


Лекарство орорат тоже стоит около 50-ти рублей. За 100 таблеток йодита калия просят 140-170 рублей. 10-миллимитровая ампула хлорида 19-го элемента обходится покупателям в 30-40 рублей.

Столько же стоит аналогичный объем перманганата. 40-килограммовый мешок удобрения в виде сульфата предлагают за 3 200 – 3 700 рублей. Цены усреднены. В разных регионах и у разных поставщиков они отличаются. Нередко запросы продавцов зависят от объемов поставок. Оптовикам обещают скидки.

Человечество знакомо с калием больше полутора веков. В лекции, прочитанной в Лондоне 20 ноября 1807 г., Хэмфри Дэви сообщил, что при электролизе едкого кали он получил «маленькие шарики с сильным металлическим блеском… Некоторые из них сейчас же после своего образования сгорали со взрывом». Это и был калий.

Калий – замечательный металл. Замечателен он не только потому, что режется ножом, плавает в воде, вспыхивает на ней со взрывом и горит, окрашивая пламя в фиолетовый цвет. И не только потому, что этот элемент – один из самых активных химически. Все это можно считать естественным, потому что соответствует положению щелочного металла калия в таблице Менделеева. Калий замечателен своей незаменимостью для всего живого и примечателен как всесторонне «нечетный» металл.

Обратите внимание: его атомный номер 19, атомная масса 39, во внешнем электронном слое – один электрон, валентность 1+. Как считают химики, именно этим объясняется исключительная подвижность калия в природе. Он входит в состав нескольких сотен минералов. Он находится в почве, в растениях, в организмах людей и животных. Он – как классический Фигаро: здесь – там – повсюду.

1. Калий

(Kalium), К, химический элемент 1 группы периодической системы Менделеева; атомный номер 19, атомная масса 39,098; серебряно-белый, очень лёгкий, мягкий и легкоплавкий металл. Элемент состоит из двух стабильных изотопов – 39 K (93,08%), 41 K (6,91%) и одного слабо радиоактивного 40 K (0,01%) с периодом полураспада 1,32×10 9 лет.

Некоторые соединения К. (например, поташ, добывавшийся из древесной золы) были известны уже в древности; однако их не отличали от соединений натрия. Только в 18 в. было показано различие между «растительной щёлочью» (поташем K 2 CO 3) и «минеральной щёлочью» (содой Na 2 CO 3). В 1807 Г. Дэви электролизом слегка увлажнённых твёрдых едких кали и натра (KOH и NaOH) выделил К. и натрий и назвал их потассием и содием. В 1809 Л.В. Гильберт предложил название «калий» (от араб. аль-кали – поташ) и «натроний» (от араб. натрун – природная сода); последнее И.Я. Берцелиус в 1811 изменил на «натрий». Название «потассий» и «содий» сохранились в Великобритании, США, Франции и некоторых др. странах. В России эти названия в 1840-х гг. были заменены на «калий» и «натрий», принятые в Германии, Австрии и Скандинавских странах.

2. Распространение в природе

Калий – распространённый элемент: содержание в литосфере 2,50% по массе. В магматических процессах К., как и натрий, накапливается в кислых магмах, из которых кристаллизуются граниты и др. породы (среднее содержание К. 3,34%). К. входит в состав полевых шпатов и слюд. В основных и ультраосновных породах, богатых железом и магнием, К. мало. На земной поверхности К., в отличие от натрия, мигрирует слабо. При выветривании горных пород К. частично переходит в воды, но оттуда его быстро захватывают организмы и поглощают глины, поэтому воды рек бедны К. и в океан его поступает много меньше, чем натрия. В океане К. поглощается организмами и донными илами (например, входит в состав глауконита); поэтому океанические воды содержат лишь 0,038% К. – в 25 раз меньше, чем натрия. В прошлые геологические эпохи, особенно в пермском периоде (около 200 млн. лет назад) на поздних стадиях испарения морской воды в лагунах, после осаждения NaCl, кристаллизовались соли К. и магния – карналлит KCI×MgCI 2 ×6H 2 O и др. (Соликамское месторождение в СССР, Штасфуртское в ГДР и т.д.; см. Калийные соли). В большинстве почв растворимых соединений К. мало, и культурные растения нуждаются в калийных удобрениях.

Радиоактивный изотоп 40 K – важный источник глубинного тепла, особенно в прошлые эпохи, когда этого изотопа было больше. При распаде 40 K образуются 40 Ca и аргон 40 Ar, уходящий в атмосферу. Некоторые минералы К. не теряют аргона, и по его содержанию можно определить абсолютный возраст горных пород (т. н. калий-аргоновый метод).

Своеобразен геохимический цикл калия – одного из. химических элементов, составляющих 99,9% массы земной коры. Его кларк равен 2,50%, а геохимический цикл складывается из разнообразных процессов, протекающих в земной коре, интенсивного биологического круговорота и несколько ограниченной водной миграции с суши в океан. Кларк калия в каменных метеоритах 0,085%, в веществе верхней мантии еще меньше – 0,03%, в магматических породах основного состава (базальтах) – 0,81%, в породах, богатых кремнием (гранитах), – 3,34%. Таким образом, очевидна постепенная концентрация этого элемента от вещества мантии к верхней части земной коры. По-видимому, калий вместе с другими щелочными и щелочноземельными элементами, алюминием и кремнием выплавлялся из вещества мантии и накапливался в земной коре. Калий принимает активное участие в магматическом процессе, его основная масса включается в твердое вещество на последних стадиях кристаллизации. Он входит в состав самых распространенных глубинных силикатов. В зоне выветривания при перестройке кристаллохимических структур силикатов большая часть калия остается в составе новых минералов и лишь частично переходит в растворимое состояние.

К. – один из биогенных элементов, постоянная составная часть растений и животных. Суточная потребность в К. у взрослого человека (2–3 г .) покрывается за счёт мяса и растительных продуктов; у грудных детей потребность в К. (30 мг/кг ) полностью покрывается грудным молоком, в котором 60–70 мг % К. Многие морские организмы извлекают К. из воды. Растения получают К. из почвы. У животных содержание К. составляет в среднем 2,4 г/кг . В отличие от натрия, К. сосредоточен главным образом в клетках, во внеклеточной среде его много меньше. В клетке К. распределён неравномерно.

Ионы К. участвуют в генерации и проведении биоэлектрических потенциалов в нервах и мышцах, в регуляции сокращений сердца и др. мышц, поддерживают осмотического давление и гидратацию коллоидов в клетках, активируют некоторые ферменты. Метаболизм К. тесно связан с углеводным обменом; ионы К. влияют на синтез белков. К + в большинстве случаев нельзя заменить на Na + . Клетки избирательно концентрируют К + . Угнетение гликолиза, дыхания, фотосинтеза, нарушение проницаемости наружной клеточной мембраны приводят к выходу К + из клеток, часто в обмен на Na + . Выделяется К. из организма главным образом с мочой. Содержание К. в крови и тканях позвоночных регулируется гормонами надпочечников – кортикостероидами. В растениях К. распределяется неравномерно: в вегетативных органах растения его больше, чем в корнях и семенах. Много К. в бобовых, свёкле, картофеле, листьях табака и кормовых злаковых травах (20–30 г ./кг сухого вещества). При недостатке К. в почвах замедляется рост растений, повышается заболеваемость. Норма калийных удобрений зависит от типа с.-х. культуры и почвы.

В биосфере микроэлементы Rb и Cs сопутствуют К. Ионы Li + и Na + – антагонисты К + , поэтому важны не только абсолютные концентрации К + и Na + , но и оптимальные соотношения K + /Na + в клетках и среде. Естественная радиоактивность организмов (гамма-излучение) почти на 90% обусловлена присутствием в тканях естественного радиоизотопа 40 K.

В медицине с лечебными целями применяют ацетат CH 3 COOK как мочегонное (чаще против отёков, вызванных сердечной недостаточностью) и хлорид KCl в случае недостаточности К. в организме (развивается при лечении некоторыми гормональными препаратами, наперстянкой, при большой потере жидкости с рвотой и поносом, при применении некоторых мочегонных средств и др.). Перхлорат KClO 4 тормозит продукцию тироксина (гормона щитовидной железы) и применяется при тиреотоксикозе. Перманганат калия KMnO 4 (марганцовокислый калий) используют как антисептическое средство.

Полевые шпаты, группа наиболее распространённых породообразующих минералов, составляющих более 50% земных и лунных горных пород и входящих в метеориты. Состав П. ш. определяется в основном соотношением компонентов в тройной системе: NaAISi 3 O 8 – KAISi 3 O 8 – CaAl 2 Si 2 O 8 , т.е. это алюмосиликаты Na, К, Са (с примесью Ba, Sr, Pb, Fe, Li, Rb, Cs, Eu, Ce идр.). Основой структуры всех П. ш. являются трёхмерный каркас, состоящий из тетраэдрических групп (Al, Si) O 4 , в которых от одной трети до половины атомов Si замещено Al. В крупных пустотах этого каркаса располагаются одновалентные катионы К + и Na + (при отношении Al: Si = 1:3) или двухвалентные катионы Ca 2+ и Ba 2+ (при Al:Si = 1:2).

В группе П. ш. выделяются две серии твёрдых растворов: KAISi 3 O 8 – NaAISi 3 O 8 (калинатровые, или щелочные, П. ш. и NaAISi 3 O 0 – CaAI 2 Si 2 O 8 – плагиоклазы). Редко встречаются бариевые П. ш. BaAI 2 Si 2 O 8 – цельзиан и твёрдые растворы KAISi 3 O 0 – BaAl 2 Si 2 O 8 – гиалофан (до 10–30% Ba).

Большое число разновидностей П. ш. обусловлено сложными соотношениями состава [главных компонентов и примесей], упорядоченности распределения Al и Si по структурным положениям, распада твёрдых растворов, субмикроскопического двойникования.

Среди существенно калиевых П. ш. различают санидин, имеющий моноклинную симметрию, с неупорядоченным распределением Si и Al, максимальный микроклин (триклинный) с полностью упорядоченным распределением Si и Al, промежуточные микроклины и ортоклаз (предположительно, псевдомоноклинный), состоящий из субмикроскопически сдвойникованных триклинных доменов.

Высокотемпературные калинатровые П. ш. являются неупорядоченными и образуют непрерывную серию твёрдых растворов; низкотемпературные претерпевают распад с образованием пертитов – закономерных прорастаний микроклина или ортоклаза и натрового П. ш. – альбита. Все разновидности плагиоклазов бывают высокотемпературными (неупорядоченными в отношении распределения алюминия и кремния), низкотемпературными (упорядоченными) и промежуточными.

Изменения степени упорядоченности и состава плагиоклазов проявляются при сохранении триклинной симметрии в весьма сложных изменениях структуры и в образовании двух областей чрезвычайно тонкой несмесимости – в ряду олигоклазов илабрадоров, сопровождающемся иризацией.

Точные определения состава и структурного состояния (упорядоченности) П. ш. проводятся с помощью диаграмм оптической ориентировки, углов оптических осей и др., измеряемых на Федорова столике, а также рентгенографическими (дифрактометрическими) методами.

Плагиоклазы и микроклины почти всегда полисинтетически сдвойникованы, т.е. образуют микроскопические срастания многих индивидов по различным характерным двойниковым законам.

Таблитчатый или призматический облик П. ш. в горных породах определяется хорошо развитыми гранями {010} и {001}, по которым образуется совершенная спайность под прямым или близким к нему углом, и гранями {110}. Твёрдость П. ш. по минералогической шкале 6–6,5; плотность 2500–2800 кг/м 3 П. ш. сами по себе бесцветны: различную окраску (серую, розовую, красную, зелёную, чёрную и др.) им придают мельчайшие включения гематита, гидроокислов железа, роговой обманки, пироксена и др.; окраску амазонита – сине-зелёного или зелёного микроклина – связывают с электронным центром Pb, замещающим К. В спектрах люминесценции П. ш. различаются полосы Pb 2+ , Fe 3+ , Ce 3+ , Eu 2+ . По спектрам электронного парамагнитного резонанса в П. ш. устанавливаются электронные центры Ti 3+ и дырочные центры Al–O - –Al, образующиеся в результате захвата дефектами решётки соответственно электрона или дырки.

П. ш. служат основой классификации горных пород. Важнейшие типы горных пород сложены в основном П. ш.: интрузивные – граниты, сиениты (щелочные П. ш. и плагиоклазы), габбро, диориты (плагиоклазы); эффузивные – андезиты, базальты; метаморфические – гнейсы, кристаллические сланцы, контактно- и регионально-метаморфизованные породы, пегматиты. В осадочных породах П. ш. встречаются в виде обломочных зёрен и новообразований (аутигенные П. ш.). В лунных породах (лунные базальты, габбро, анортозиты) отмечены только плагиоклазы.

Значение П. ш. определяется тем, что благодаря широким вариациям состава и свойств они используются при геологопетрографических исследованиях массивов магматических и метаморфических пород. Соотношение изотопов 40 K/ 40 Ar калинатровых П. ш. используется для определения абсолютного возраста горных пород.

Щелочные П. ш. пегматитов и маложелезистых пород применяются в керамической, стекольной, фарфоро-фаянсовой промышленности. Полевошпатовые породы (лабрадориты) служат облицовочным материалом. Амазонит, лунный камень (иризирующий олигоклаз) используются как поделочные камни.

Слюды, группа минералов – алюмосиликатов слоистой структуры с общей формулой R 1 R 2-3 (OH, F) 2 , где R 1 = К, Na; R 2 = Al, Mg, Fe, Li (см. Силикаты природные). Основной элемент структуры С. представлен трёхслойным пакетом из двух тетраэдрических слоев с находящимся между ними октаэдрическим слоем, состоящим из катионов R 2 . Два из шести атомов кислорода октаэдров замещены гидроксильными группами (ОН) или фтором. Пакеты связываются в непрерывную структуру через ионы К + (или Na +) с координационным числом 12. По числу октаэдрических катионов в химической формуле различаются диоктаэдрические и триоктаэдрические С.: катионы Al + занимают два из трёх октаэдров, оставляя один пустым, тогда как катионы Mg 2+ , Fe 2+ и Li + с Al + занимают все октаэдры. С. кристаллизуются в моноклинной (псевдотригональной) системе. Относительное расположение шестиугольных ячеек поверхностей трёхслойных пакетов обусловлено их поворотами вокруг оси с на различные углы, кратные 60°, в сочетании со сдвигом вдоль осей а и в элементарной ячейки. Это определяет существование полиморфных модификаций (политипов) С., различаемых рентгенографически. Обычны политипы моноклинной симметрии.

По химическому составу выделяют следующие группы С. Алюминиевые С.:

мусковит KAl 2 (OH) 2 ,

парагонит NaAl 2 (OH) 2 ,

магнезиально – железистые С.:

флогопит KMg 3 (OH, F) 2 ,

лепидомелан Kfe 3 (OH, F) 2 ;

литиевые:

лепидолит Kli 2-x Al 1+x (OH. F) 2 ,

циннвальдит KLiFeAl (OH, F) 2

тайниолит KLiMg 2 (OH, F) 2 .

Встречаются также ванадиевая С. – роскоэлит KV 2 (OH) 2 , хромовая С. – хромовый мусковит, или фуксит, и др. В С. широко проявляются изоморфные замещения: К + замещается Na + , Ca 2+ , Ba 2+ , Rb + , Cs + и др.; Mg 2+ и Fe 2+ октаэдрического слоя – Li + , Sc 2+ , Jn 2+ и др.; Al 3+ замещается V 3+ , Cr 3+ , Ti 4+ , Ga 3+ и др. Наблюдаются совершенный изоморфизм между Mg 2+ и Fe 2+ (непрерывные твёрдые растворы флогопит – биотит) и ограниченный изоморфизм между Mg 2+ – Li + и Al 3+ –Li + , а также переменное соотношение окисного и закисного железа. В тетраэдрических слоях Si 4+ может замещаться Al 3+ , а ионы Fe 3+ могут замещать тетраэдрический Al 3+ ; гидроксильная группа (OH) замещается фтором. С. часто содержат различные редкие элементы (Be, В, Sn, Nb, Ta, Ti, Mo, W, U, Th, Y, TR, Bi); часто эти элементы находятся в виде субмикроскопических минералов-примесей: колумбита, вольфрамита, касситерита, турмалина и др. При замене К + на Ca 2+ образуются минералы группы т. н. хрупких С. – маргарит CaAl 2 (OH) 2 и др., более твёрдые и менее упругие, чем собственно С. При замещении межслоевых катионов К + на H 2 O наблюдается переход к гидрослюдам, являющимся существенными компонентами глинистых минералов. Следствия слоистой структуры С. и слабой связи между пакетами: пластинчатый облик минералов, совершенная (базальная) спайность, способность расщепляться на чрезвычайно тонкие листочки, сохраняющие гибкость, упругость и прочность. Кристаллы С. могут быть сдвойникованы по «слюдяному закону» с плоскостью срастания (001); часто имеют псевдогексагональные очертания. Твёрдость по минералогической шкале 2,5–3; плотность 2770 кг/м 3 (мусковит), 2200 кг/м 3 (флогопит), 3300 кг/м 3 (биотит). Мусковит и флогопит бесцветны и в тонких пластинках прозрачны; оттенки бурого, розового, зелёного цветов обусловлены примесями Fe 2+ , Мп 2+ , Cr 2+ и др. Железистые С. – бурые, коричневые, тёмно-зелёные и чёрные в зависимости от содержания и соотношения Fe 2+ и Fe 3+ . С. – один из наиболее распространённых породообразующих минералов интрузивных, метаморфических и осадочных горных пород, а также важное полезное ископаемое.

Различают 3 вида промышленных С.: листовая С.; мелкая С. и скрап (отходы от производства листовой С.); вспучивающаяся С. (например, вермикулит). Промышленные месторождения листовой С. (мусковит и флогопит) высокого качества редки. Промышленные требования к листовой С. сводятся к совершенству кристаллов и их размерам; к мелкой С. – чистота слюдяного материала. Крупные кристаллы мусковита встречаются в гранитных пегматитах (Мамско-Чуйский район Иркутской области, Чупино-Лоухский район Карельской АССР, Енско-Кольский район Мурманской обл. – в СССР, месторождения Индии, Бразилии, США). Месторождения флогопита приурочены к массивам ультраосновных и щелочных пород (Ковдорское на Кольском полуострове) или к глубоко метаморфизованным докембрийским породам первично карбонатного (доломитового) состава (Алданский слюдоносный район Якутской АССР, Слюдянский район на Байкале в СССР), а также к гнейсам (Канада и Малагасийская Республика). Мусковит и флогопит являются высококачественным электроизоляционным материалом, незаменимым в электро-, радио- и авиатехнике. Месторождения лепидолита, одного из основных промышленных минералов литиевых руд, связаны с гранитными пегматитами натрово-литиевого типа. В стекольной промышленности из лепидолита изготавливают специальные оптические стекла.

С. разрабатывается подземным или открытым способами с применением буровзрывных работ. Кристаллы С. выбирают из горной массы вручную.

Разработаны методы промышленного синтеза С. Большие листы, получаемые путём склеивания пластин С. (миканиты), используются как высококачественный электро- и теплоизоляционный материал. Из скрапа и мелкой С. получают молотую С., потребляемую в строительной, цементной, резиновой промышленности, при производстве красок, пластмасс и т.д. Особенно широко используется мелкая С. в США.

3. Поведение в различных геологических процессах

В воде он находится в виде катиона К+. Калий играет важную роль в жизни растений и животных. Он принимает участие в фотосинтезе, влияет на обмен углеводов, азота и фосфора. Поэтому калий жадно поглощается растениями и активно вовлекается в биологический круговорот. Его кларк в живом веществе очень высок и составляет 0,3%, как у азота. Важно отметить, что калий, так же как и фосфор, концентрируется в плодах и семенах, в интенсивно растущих органах растений. При недостатке калия в почве урожай сельскохозяйственных культур резко снижается. Значительная часть катионов К+ из природных вод захватывается растениями суши. Кроме того, огромное количество катионов этого элемента поглощают (сорбируют) глинистые минералы. В результате в бассейны стока поступает лишь небольшая часть этого элемента по сравнению с его количеством в глубинных горных породах, подвергшихся выветриванию. Живое вещество суши и продукты выветривания (глины) прочно удерживают калий. Поэтому в ежегодном биологическом круговороте на континентах участвует 1 206 млн. т калия, а в Мировом океане – всего 920 млн. т. Среднее содержание калия в морской воде небольшое – 0,038%. Доставляемый реками калий очень быстро расходуется. Частично он поглощается живыми организмами, но значительные массы элемента уходят какими-то пока неизвестными путями. «Исчезновение» калия из океана – еще одна загадка геохимии. По расчетам А.П. Виноградова, в Мировом океане сохранилось лишь 2,6% от того количества, которое было принесено реками.

Один из циклов своей миграции калий начинает из почвы. Он извлекается из нее корнями растений, накапливается в их отмерших остатках, переходит частично в организм животного или человека и с перегноем вновь возвращается в почву, из которой его извлекла живая клетка.
Большая часть калия проходит именно этот путь, но отдельным атомам удается достигнуть больших океанов и вместе с другими солями обусловить соленость морской воды, хотя в ней все же атомов натрия в сорок раз больше, чем калия.

Калий – один из 6 основных элементов (кислород, кремний, алюминий, железо, кальций, калий), составляющих 96% всех химических веществ почвы. В земной коре его содержится 2.5%. По мере развития жизни на земле калий горных пород активно вовлекался в биологический круговорот, переходил в подвижное состояние и в соответствии с интенсивностью и направленностью региональных биологических процессов накапливался в корнеобитаемом слое почвы, закрепляясь в ее минеральной и органической части, выщелачивался за счет миграции и эрозии, отчуждался с биомассой.

В почве, в отличие от материнской породы, калий находится в составе не только минеральных структур, но и сложного органоминерального коллоидного комплекса, остатков растительного, животного и микробиологического происхождения.

Состояние и режим калия в горизонтах почвенного профиля тесно связаны с минералогическим составом почвообразующих пород, их гранулометрическим составом, зональной спецификой и характером землепользования. Минералами, определяющими валовое содержание калия в почве (в среднем около 1.5%) и в почвообразующей породе, в основном являются калиевые полевые шпаты, слюды и иллиты.

Обычно не более 5% калия доступно растениям в глинистых почвах и 1.5% в песчаных. Минералогический и органоминеральный состав почвы определяет такое ее важное свойство как способность фиксировать или поглощать калий. Фиксация калия возрастает при высушивании почвы. Иногда фиксированный калий удерживается минералами так прочно, что становится недоступным для растений. Фиксация калия особенно выражена на достаточно «истощенных» почвах. Ограничение в обеспечении растений калием при снижении влажности почвы возникает не только в результате процессов фиксации, но и ослабления скорости передвижения калия к корням.

Движение большинства питательных веществ в почве к корневой системе осуществляется либо путем диффузии, либо совместно с почвенной влагой. Диффузионные потоки – основной путь транспорта калия из почвы в растение. Они создаются с возникновением градиента концентрации элемента в результате его поглощения корнями. Также как и движение воды возникает при наличии градиента водного потенциала в системе почва – растение. Чем сильнее развиты надземные части растения и выше их потребность в воде и питательных веществах, тем выше соответствующий градиент. Поступление калия к растениям при массовом токе воды не велико и резко ослабевает по мере их старения. Размеры диффузии калия тесно связаны с процессами взаимодействия его различных форм в почве, с ее влажностью, адсорбционной емкостью корневой системы.

При повышенной влажности среды корни мобилизуют калий из большего объема почвы, что повышает степень его доступности даже при невысоком содержании. Наоборот, при пониженной влажности возможность диффузии ограничена, несмотря на высокий градиент концентрации.

Ослабленное обеспечение растений калием может отмечаться не только в засушливой зоне, но и в условиях умеренного климата в период отсутствия осадков, который часто совпадает с периодами максимального потребления калия. Внесение калийных удобрений без учета региональных метеоусловий может не дать ожидаемого эффекта.

Другой причиной недостаточного снабжения растений калием может быть ограниченная скорость перехода из поглощенного состояния в доступное, не соответствующая размерам его потребления растениями. Например, потребление калия картофелем за сутки может достигать 5 и даже 10 кг/га. Только благодаря научно-обоснованной системе удобрения можно избежать суточного дефицита в калийном питании.

Наряду с параметрами, характеризующими свойства почвы (потенциальные запасы калия, буферная способность, гранулометрический состав, кислотность, содержание гумуса и питательных элементов, глубина и свойства корнеобитаемого слоя), необходимо учитывать факторы водного и теплового баланса, сопоставляя все это с предполагаемой продуктивностью сельскохозяйственных культур и особенностями их калийного питания.

Оптимальный режим калийного питания растений, обеспечивающий заданную продуктивность, может быть создан только при использовании систематически определяемого блока показателей. Количество их и периодичность определения зависят от поставленной задачи и зональных условий.

Итак, учет запаса в почве доступных для растений форм калия весьма важен, поскольку современное земледелие немыслимо без достаточного уровня калийного питания сельскохозяйственных культур.

4. Месторождения

В геологической науке существует прецедент, когда целая эпоха истории земли – Пермь – получила название от наименования населенного пункта – города на западном Урале, столицы Пермского края. В 1841 году английский геолог Родерик Мурчисон, (Murchison, 1792–1871), путешествуя по Уралу, открыл Пермский период – последней (шестой) системы палеозойской эры истории Земли (следует за каменноугольным периодом и предшествует триасовому периоду мезозойской эры). Начало Перми определяется в 285 млн. лет назад, а продолжительность – 55 млн. лет.

Свыше 250 миллионов лет назад в Пермский период Палеозойской эры практически над всей территорией современной Евразии располагалось огромное Пермское море. Однако поднятие обширных платформенных областей разобщило гигантское море на полузаметные бассейны – лагуны. Под воздействием солнца концентрация солей в лагунах резко возрастала, а затем натриевые, калиевые, магниевые соли стали выпадать в осадок. Так постепенно на протяжении многих тысячелетий формировалось одно из крупнейших в мире Верхнекамское месторождение калийно-магниевых солей (ВМКМС).

Месторождение находится на Западном Урале, в Пермской области и представляет собой гигантскую линзообразную залежь, имеющую площадь 6,5 тыс. км 2 , вытянутую с севера на юг на 200 км и шириной до 50 км.

Соляные формации относятся к филипповскому (ангидриты, карбонаты) и иренскому (ангидриты, соли) горизонтам кунгурского яруса нижней перми и нижней части соликамского горизонта (глины, мергели, соли) уфимского яруса верхней перми. На большей части Соликамской депрессии распространен карбонатно-сульфатный тип разреза филипповского горизонта (известняки, доломиты, ангидриты). Иренский горизонт (березниковская свита) включает глинисто-ангидритовую, соленосную и переходную толщи. Соленосная толща делится на подстилающую каменную соль (140–400 м), сильвинитовую (20 м), сильвинито-карналлитовую (60–70 м) зоны и покровную каменную соль (0–55 м). После саскачеванского месторождения (Канада, 37% мировых запасов калийных солей) прикамское является крупнейшим в мире. Запасы только калийных солей на Верхнекамском месторождении по категориям А + В + С1 + С2 составляют более 120 млрд. тонн. Это 31,4% мировых запасов хлористого калия.

Мировая калийная промышленность в последнее время пережила несколько потрясений. В октябре прошлого года рынок встревожила новость об аварии на руднике «Уралкалия» в Березниках (Пермский край), в январе 2007-го о возможности прекращения производства на одном из своих рудников в связи с аварийной ситуацией объявила североамериканская компания Mosaic. Затопления рудников – главный риск для калийной промышленности с момента ее появления в позапрошлом веке – случаются до сих пор.

Сегодня мировая калийная индустрия находится на подъеме. Стабильный спрос на калийные удобрения обеспечивают все аграрно развитые страны, а переживающие экономический подъем Китай, Бразилия и Индия из года в год увеличивают закупки хлористого калия, подогревая спрос на международных рынках.

Крупнейшие месторождения калия расположены в канадской провинции Саскачеван и в российском Верхнекамье (Пермский край). На долю России, выпускающей ежегодно около 10 миллионов тонн хлористого калия, приходится примерно 20 процентов мирового производства. Калий также добывают белорусы, немцы, израильтяне, иорданцы – всего в мире насчитывается около десятка более-менее крупных производителей, которые продают его потребителям из 150 стран. И обострения конкуренции среди производителей калия в ближайшее время не предвидится. Ведь для того чтобы создать калийное производство мощностью 1 миллион тонн в год с нуля уже на разведанном месторождении, по подсчетам канадских калийщиков, необходимо вложить не менее 1 миллиарда долларов, притом, что первые тонны удобрений удастся получить через 5–7 лет.

Безусловно, в калийной отрасли наряду с доходным производством существуют определенные риски. Риски обусловлены тем фактом, что соли калия, магния и натрия растворимы при попадании грунтовых вод в рудничное пространство. Это теоретически может привести к оседаниям земной поверхности.

Первый калийный рудник близ немецкого города Ашерслебен затонул еще в 1886 году. С тех пор его судьбу разделили еще около 80 рудников, расположенных на разных континентах. Никогда ни один из них не удавалось спасти от затопления.

У каждого калийного месторождения свои особенности. Например, в Германии часто встречаются месторождения в форме купола. Для Канады типично столбовое залегание солей, при котором они расположены почти вертикально. Верхнекамское месторождение – практически пологое, и калий здесь залегает пластами на глубине 300–500 метров. При этом главная задача при добыче калия – оставить в неприкосновенности верхний и нижний слои. Выход за их пределы чреват притоком грунтовых вод и последующим затоплением рудника. Пренебрежение этим правилом приводит к плачевным результатам. В частности, еще в конце XIX – начале ХХ века несколько рудников в Германии (Ашерслебен-3, Ассе-1, Гедвигсбург и др.) были затоплены из-за добычи каинита – труднорастворимого минерала, который находится в своде соляного купола и вместе с другими нерастворимыми породами образует «шляпу», предохраняющую залежь от грунтовых вод.

Не удалось избежать проблем и североамериканским производителям калия. На соединенных между собой рудниках К-1 и К-2 близ канадского города Эстерхази компания Mosaic в течение нескольких лет добывает калий в условиях притока рассола. В конце января 2007 года приток рассолов в шахту Mosaic резко возрос – до 25 тысяч галлонов в минуту (американский галлон составляет 3,79 литра). Руководство компании заявило, что если поступление рассола не уменьшится, то оно рассмотрит вопрос о консервации рудника. Однако уже в начале марта Mosaic заявила о том, что приток стабилизировался на уровне 5 тысяч галлонов в минуту, что позволяет дальше эксплуатировать рудник.

Затопление может длиться от нескольких дней до нескольких лет. Примером катастрофического затопления стал рудник французско-конголезской компании «Компани де потас дю Конго», которая разрабатывала месторождение в Конго. Построенный ею калийный рудник не проработал и нескольких лет. В 1977 году в течение трех дней приток рассолов в шахту увеличился с 17 до 10 000 куб. м/час.

Первый случай затопления рудника у нас в стране приходится на 1986 год. Тогда авария произошла недалеко от Березников на рудоуправлении №3 «Уралкалия». Небольшая струйка воды за несколько недель превратилась в мощный поток. Вскоре рудник пришлось закрыть, а спустя несколько месяцев в месте прорыва воды в шахту образовалась воронка глубиной около ста метров – грунтовые воды размыли соляную толщу, в недрах образовалась пустота, в которую обрушились вышележащие слои.

Следующая авария случилась через 9 лет в северной части Верхнекамского месторождения, которую осваивает компания «Сильвинит». 5 января 1995 года в результате землетрясения силой 5 баллов по шкале Рихтера на руднике второго рудоуправления ОАО «Сильвинит» в течение нескольких секунд на площади 950 на 750 м образовался провал глубиной более четырех метров. Под угрозой затопления оказались сразу два рудника, которые в свое время для того, чтобы облегчить задачу шахтостроителям, были соединены выработкой. Кроме того, появился риск для жилой застройки Соликамска, под которой расположен рудник. От масштабной катастрофы город тогда спас счастливый случай. С вышележащих пластов опустился 20-метровый слой пластичной глины, который «запечатал» водоносный горизонт, не позволив воде проникнуть в рудник.

Тогда власти Пермской области и промышленные предприятия всерьез обеспокоились возможностью новых аварий. Верхнекамское месторождение начало активно разрабатываться в 30–50-е годы прошлого века. В те годы страна остро нуждалась в сырье для цветной металлургии и удобрениях, и об опасностях, к которым может привести не слишком вдумчивое освоение месторождения, думать было некогда. Когда же риски подземной разработки солей были изучены более детально, над рудниками уже были построены города Березники и Соликамск.

Наиболее эффективной мерой защиты от возможного оседания поверхности в результате разработки месторождений ученые считают закладку пустот отходами калийного производства – каменной солью. С начала освоения месторождения в 1930-х годах до приказа Минхимпрома СССР 1971 года закладка не велась в принципе. За это время под городами накопились миллионы кубометров пустот. Но и после приказа закладочные работы финансировались государством по остаточному принципу. Лишь в 2002 году законодательное собрание Пермской области приняло программы закладки пустот под Березниками и Соликамском. Завершить выполнение обеих программ предполагалось к 2008 году. Более 70 процентов финансирования взяли на себя компании «Уралкалий» и «Сильвинит», остальное – бюджет области и местные бюджеты.

В Березниках программа выполнялась с опережением графика. К середине 2006 года она была выполнена более чем на 90 процентов. В результате в городе практически прекратились оседания поверхности. Полностью завершить закладочные работы помешала авария.

В октябре 2006 года в рудник первого рудоуправления «Уралкалия» стали поступать воды рассольного горизонта. Спустя 10 дней рассолоприток резко активизировался до 1200 кубометров в час. Насосное оборудование перестало справляться с ним, и рудник пришлось закрыть.

В причинах происшедшего на первом калийном в Березниках разбиралась государственная комиссия, сформированная Ростехнадзором. Как следует из ее итогового протокола, главной причиной аварии стали особенности геологического строения данного участка Верхнекамского месторождения. «Здесь имела место очень сложная и редкая геологическая аномалия, – пояснил руководитель Пермского межрегионального управления Ростехнадзора Станислав Южанин. – Над рассольным горизонтом обычно находится глина. В этом месте она отсутствует и замещена легкорастворимой породой. Часть ее была вымыта грунтовыми водами, в результате чего возникла ослабленная зона». Еще одним фактором, повлиявшим на ситуацию, стала добыча калийной руды на аварийном участке сразу на двух пластах, расположенных друг под другом. Добыча руды производилась еще в 60-х годах прошлого века по нормативным документам того времени. Запрет на отработку двух пластов под городской территорией был введен только в 1970-х. Но под влиянием усиленного оседания пород в ослабленной зоне водозащитная толща рудника дала трещину, и в него полились воды рассольного горизонта.

Для жизни Березников авария не имела драматических последствий из-за практически завершенных закладочных работ, однако повлияла на городскую инфраструктуру, находящуюся в зоне аварии. Прорыв водозащитной толщи случился в районе железной дороги и газопровода, ведущего на местную ТЭЦ, а значит, и провал с большой долей вероятности должен произойти именно там. В течение двух недель после аварии ТГК-9 построила новый газопровод. Движение пассажирских поездов на опасном участке было остановлено, и в короткие сроки был построен обводной путь.

Авария на первом руднике «Уралкалия» – одна из самых сложных в истории калийной промышленности. Хотя бы потому, что в мире не отмечено случаев, когда аварийный рудник находился бы непосредственно под промышленным городом с населением 180 тысяч человек. Но ситуации, когда на поверхности были расположены более мелкие населенные пункты, все же встречались.

Больше всего случаев затоплений приходится на долю Германии. Только в окрестностях Штаcфурта и Ашерслебена расположены около 30 рудников, большинство которых затоплены еще в конце XIX – начале XX века.

Последствия затопления шахты в Ронненберге (пригород Ганновера) оказались весьма драматичными. Когда летом 1975 года в течение двух недель в калийный рудник поступило более 7 миллионов кубометров воды, опускания поверхности достигли 25 см в день, а по домам пошли трещины, часть жителей Ронненберга даже пришлось эвакуировать. Правда, уже через несколько дней они вернулись в свои дома. Теперь в этом городе трудно отыскать даже намек на следы былых разрушений – все дома давно отремонтированы и приведены в порядок, а о калийном прошлом города напоминает только солеотвал на окраине.

Библиографический список

1. Англ., т. 3, М., 1966; Быховер Н.А., Экономика минерального сырья, М., 1969; Волков К.И., 3агибалов П.Н., Мецик М.С., Свойства, добыча и переработка слюды, [Иркутск], 1971.

2. Калий, в кн.: Краткая химическая энциклопедия, т. 2, М., 1963; Некрасов Б.В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963.

3. Дир У.А., Хауи Р.А., 3усман Л ж., Породообразующие минералы, пер. с англ., т. 4, М., 1966; Марфунин А.С., Полевые шпаты – фазовые взаимоотношения, оптические свойства, геологическое распределение, М., 1962.

4. Капланский С.Я., Минеральный обмен, М. – Л., 1938; Вишняков С.И., Обмен макроэлементов у сельскохозяйственных животных, М., 1967; Сатклифф Дж.-Ф., Поглощение минеральных солей растениями, пер. с англ., М., 1964.

Похожие публикации