Интернет-журнал дачника. Сад и огород своими руками

Зависимость массы от температуры и давления. Законы идеальных газов. Хранение и транспортировка газов

В основе физических свойств газов и законов газового состояния лежит молекулярно-кинетическая теория газов. Большинство законов газового состояния было выведено для идеального газа, молекулярные силы которого равны нулю, а объем самих молекул бесконечно мал по сравнению с объемом межмолекулярного пространства.

Молекулы реальных газов помимо энергии прямолинейного движения обладают энергией вращения и колебания. Они занимают некоторый объем, то есть имеют конечные размеры. Законы для реальных газов несколько отличаются от законов для идеальных газов. Это отклонение тем больше, чем выше давление газов и ниже их температура, оно учитывается введением в соответствующие уравнения поправочного коэффициента сжимаемости.

При транспортировании газов по трубопроводам под высоким давлением коэффициент сжимаемости имеет большое значение.

При давлениях газа в газовых сетях до 1 МПа законы газового состояния для идеального газа достаточно точно отражают свойства природного газа. При более высоких давлениях или низких температурах применяют уравнения, учитывающие объем, занимаемый молекулами, и силы взаимодействия между ними, или вводят в уравнения для идеального газа поправочные коэффициенты - коэффициенты сжимаемости газа.

Закон Бойля - Мариотта.

Многочисленными опытами установлено, что если взять определенное количество газа и подвергать его различным давлениям, то объем этого газа будет изменяться обратно пропорционально величине давления. Эта зависимость между давлением и объемом газа при постоянной температуре выражается следующей формулой:

p 1 /p 2 = V 2 /V 1 , или V 2 = p 1 V 1 /p 2 ,

где p 1 и V 1 - первоначальные абсолютное давление и объем газа; p 2 и V 2 - давление и объем газа после изменения.

Из этой формулы можно получить следующее математическое выражение:

V 2 p 2 = V 1 p 1 = const.

То есть произведение величины объема газа на величину соответствующего этому объему давления газа будет постоянной величиной при постоянной температуре. Этот закон имеет практическое применение в газовом хозяйстве. Он позволяет определять объем газа при изменении его давления и давление газа при изменении его объема при условии, что температура газа остается постоянной. Чем больше при постоянной температуре увеличивается объем газа, тем меньше становится его плотность.

Зависимость между объемом и плотностью выражается формулой:

V 1 /V 2 = ρ 2 /ρ 1 ,

где V 1 и V 2 - объемы, занимаемые газом; ρ 1 и ρ 2 - плотности газа, соответствующие этим объемам.

Если отношение объемов газа заменить отношением их плотностей, то можно получить:

ρ 2 /ρ 1 = p 2 /p 1 или ρ 2 = р 2 ρ 1 /p 1 .

Можно сделать вывод, что при одной и той же температуре плотности газов прямо пропорциональны давлениям, под которыми находятся эти газы, то есть плотность газа (при постоянной температуре) будет тем больше, чем больше его давление.

Пример. Объем газа при давлении 760 мм рт. ст. и температуре 0 °С составляет 300 м 3 . Какой объем займет этот газ при давлении 1520 мм рт. ст. и при той же температуре?

760 мм рт. ст. = 101329 Па = 101,3 кПа;

1520 мм рт. ст. = 202658 Па = 202,6 кПа.

Подставляя заданные значения V , р 1 , р 2 в формулу, получим, м 3:

V 2 = 101, 3-300/202,6 = 150.

Закон Гей-Люссака.

При постоянном давлении с повышением температуры объем газов увеличивается, а при понижении температуры уменьшается, то есть при постоянном давлении объемы одного и того же количества газа прямо пропорциональны их абсолютным температурам. Математически эта зависимость между объемом и температурой газа при постоянном давлении записывается так:

V 2 /V 1 = Т 2 /Т 1

где V - объем газа; Т - абсолютная температура.

Из формулы следует, что если определенный объем газа нагревать при постоянном давлении, то он изменится во столько раз, во сколько раз изменится его абсолютная температура.

Установлено, что при нагревании газа на 1 °С при постоянном давлении его объем увеличивается на постоянную величину, равную 1 /273,2 первоначального объема. Эта величина называется термическим коэффициентом расширения и обозначается р. С учетом этого закон Гей-Люссака можно сформулировать так: объем данной массы газа при постоянном давлении есть линейная функция температуры:

V t = V 0 (1 + βt или V t = V 0 T/273.

Закон Шарля.

При постоянном объеме абсолютное давление неизменного количества газа прямо пропорционально его абсолютным температурам. Закон Шарля выражается следующей формулой:

р 2 /р 1 = Т 2 /Т 1 или p 2 = p 1 T 2 /T 1

где р 1 и р 2 - абсолютные давления; T 1 и Т 2 — абсолютные температуры газа.

Из формулы можно сделать вывод, что при постоянном объеме давление газа при нагревании увеличивается во столько раз, во сколько раз увеличивается его абсолютная температура.

Темы кодификатора ЕГЭ : изопроцессы - изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

То есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

То есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором - . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

(1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

(2)

Данное утверждение называется законом Бойля - Мариотта .

Записав закон Бойля - Мариотта в виде

(3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:


-диаграмма: ось абсцисс , ось ординат ;
-диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой .

Изотерма на -диаграмме - это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру - график функции ). Изотерма-гипербола изображена на рис. 1 .

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на -диаграмме .

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2 ). Первый процесс идёт при температуре , второй - при температуре .

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй - class="tex" alt="p_2 > p_1"> . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, class="tex" alt="T_2 > T_1"> .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3 ):

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс - это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где - атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части - только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

(4)

А отсюда теперь - ввиду произвольности выбора состояний! - получаем закон Гей-Люссака :

(5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре :

(6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой . На -диаграмме изобара является прямой линией (рис. 4 ):

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на -диаграмме .
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5 ):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля - Мариотта!).

Стало быть, class="tex" alt="p_2 > p_1"> .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6 ):

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, - это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

(7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля :

(8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре :

(9)

Увеличение давления газа фиксированного объёма при его нагревании - вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Графики изохорного процесса

График изохорного процесса называется изохорой . На -диаграмме изохора является прямой линией (рис. 7 ):

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля - Мариотта). Стало быть, class="tex" alt="V_2 > V_1"> .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9 ):

Рис. 9. Изохоры на и -диаграммах

Законы Бойля - Мариотта, Гей-Люссака и Шарля называются также газовыми законами .

Мы вывели газовые законы из уравнения Менделеева - Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Уравнение состояния идеального газа определяет связь температуры, объема и давления тел.

  • Позволяет определить одну извеличин, характеризующих состояние газа, по двум другим (используется в термометрах);
  • Определить, как протекают процессы при определенных внешних условиях;
  • Определить, как меняется состояние системы, если она совершает работу или получает тепло от внешних тел.

Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа)

- универсальная газовая постоянная , R = kN A

Уравнение Клапейрона (объединенный газовый закон)

Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный.

Количественные зависимости между двумя параметрами газа одной и той же массы при неизменном значении третьего параметра называют газовыми законами.

Газовые законы

Закон Бойля - Мариотта

Первый газовый закон был открыт английским ученым Р. Бойлем (1627-1691) в 1660 г. Работа Бойля называлась «Новые эксперименты, касающиеся воздушной пружины». И действительно, газ ведет себя подобно сжатой пружине, в этом можно убедиться, сжимая воздух в обычном велосипедном насосе.

Бойль изучал изменение давления газа в зависимости от объема при постоянной температуре. Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим (от греческих слов isos - равный, therme - тепло).

Независимо от Бойля несколько позднее французский ученый Э. Мариотт (1620-1684) пришел к тем же выводам. Поэтому найденный закон получил название закона Бойля-Мариотта.

Произведение давления газа данной массы на его объем постоянно, если температура не меняется

pV = const

Закон Гей-Люссака

Сообщение об открытии еще одного газового закона было опубликовано лишь в 1802 г., спустя почти 150 лет после открытия закона Бойля-Мариотта. Закон, определяющий зависимость объема газа от температуры при постоянном давлении (и неизменной массе), был установлен французским ученым Гей-Люссаком (1778- 1850).

Относительное изменение объема газа данной массы при постоянном давлении прямо пропорционально изменению температуры

V = V 0 αT

Закон Шарля

Зависимость давления газа от температуры при постоянном объеме экспериментально установил французский физик Ж. Шарль (1746-1823) в 1787 г.

Ж. Шарль в 1787 г., т. е. раньше, чем Гей-Люссак, установил и зависимость объема от температуры при постоянном давлении, но он своевременно не опубликовал своих работ.

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

p = p 0 γT

Название Формулировка Графики

Закон Бойля-Мариотта – изотермическ ий процесс

Для данной массы газа произведение давления на объем постоянно, если температура не меняется

Закон Гей-Люссака – изобарный процесс

Исследования зависимости давления газа от температуры при условии неизменного объема определенной массы газа впервые были произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746 – 1823). Можно воспроизвести эти опыты в упрощенном виде, нагревая газ в большой колбе, соединенной с ртутным манометром М в виде узкой изогнутой трубки (рис. 6).

Пренебрежем ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, будем отмечать температуру газа по термометру Т , а соответствующее давление – по манометру М . Наполнив сосуд тающим льдом, измерим давление p 0 , соответствующее температуре 0 °C.

Опыты подобного рода показали следующее.

1. Приращение давления некоторой массы составляет определенную часть α того давления, которая имела данная масса газа при температуре 0 °C. Если давление при 0 °C обозначить через p 0 , то приращение давления газа при нагревании на 1 °C есть p 0 +αp 0 .

При нагревании на τ приращение давления будет в τ раз больше, т.е. приращение давления пропорционально приращению температуры .

2. Величина α, показывающая, на какую часть давления при 0 °C увеличивается давление газа при нагревании на 1 °C, имеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно 1/273 °C -1 . Величину α называют температурным коэффициентом давления. Таким образом, температурный коэффициент давления для всех газов имеет одно и то же значение, равное 1/273 °C -1 .

Давление некоторой массы газа при нагревании на 1 °C при неизменном объеме увеличивается на 1/273 часть давления, которое эта масса газа имела при 0 °C (закон Шарля ).

Следует, однако, иметь в виду, что температурным коэффициентом давления газа, полученный при измерении температуры по ртутному манометру, не в точности одинаков для разных температур: закон Шарля выполняется только приближенно, хотя и с очень большой степенью точности.

Формула, выражающая закон Шарля. Закон Шарля позволяет рассчитывать давление газа при любой температуре, если известно его давление при температуре
0 °C. Пусть давление данной массы газа при 0 °C в данном объеме есть p 0 , а давление того же газа при температуре t есть p . Приращение температуры есть t , следовательно, приращение давления равно αp 0 t и искомое давление

Этой формулой можно пользоваться также и в том случае, если газ охлажден ниже 0 °C; при этом t будет иметь отрицательные значения. При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприменим и формула (2) перестает быть годной.

Закон Шарля с точки зрения молекулярной теории. Что происходит в микромире молекул, когда температура газа меняется, например, когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления данного газа: во-первых, могло увеличиться число ударов молекул за единицу времени на единицу площади, во-вторых, мог увеличиться импульс, передаваемый при ударе в стенку одной молекулой. И та, и другая причина требуют увеличения скорости молекул (напоминаем, что объем данной массы газа остается неизменным). Отсюда становится ясным, что повышение температуры газа (в макромире) есть увеличение средней скорости беспорядочного движения молекул (в микромире).

Некоторые типы электрических ламп накаливания наполняют смесью азота и аргона. При работе лампы газ в ней нагревается примерно до 100 °C. Какое должно быть давление смеси газов при 20 °C, если желательно, чтобы при работе лампы давление газа в ней не превышало атмосферного? (ответ: 0,78 кгс/см 2)

На манометрах ставится красная черта, указывающая предел, свыше которого увеличение газа опасно. При температуре 0 °C манометр показывает, что избыток давления газа над давлением наружного воздуха равен 120 кгс/см 2 . Будет ли достигнута красная черта при повышении температуры до 50 °C, если красная черта стоит на 135 кгс/см 2 ? Давление наружного воздуха принять равным 1 кгс/см 2 (ответ: стрелка манометра перейдет за красную черту)

2. Изохорический процесс . V- постоянен. P и T изменяются. Газ подчиняется закону Шарля. Давление, при постоянном объёме, прямо пропорционально абсолютной температуре

3. Изотермический процесс . T- постоянна. P и V изменяются. В этом случае газ подчиняется закону Бойля - Мариотта. Давление данной массы газа при постоянной температуре обратно пропорциональна объёму газа .

4. Из большого числа процессов в газе, когда изменяются все параметры, выделяем процесс, подчиняющийся объединенному газовому закону. Для данной массы газа произведение давление на объём, делённое на абсолютную температуру есть величина постоянная .

Этот закон применим для большого числа процессов в газе, когда параметры газа меняются не очень быстро.

Все перечисленные законы для реальных газов являются приближёнными. Погрешности увеличиваются с ростом давления и плотности газа.

Порядок выполнения работы:

1. часть работы .

1. Шланг стеклянного шара опускаем в сосуд с водой комнатной температуры (рис.1 в приложении). Затем шар нагреваем (руками, тёплой водой).Считая давление газа постоянным, напишите как объём газа зависит от температуры

Вывод:………………..

2. Соединим шлангом цилиндрический сосуд с миллиманометром (рис. 2). Нагреем металлический сосуд и воздух в нём с помощью зажигалки. Считая объём газа постоянным, напишите, как зависит давление газа от температуры.

Вывод:………………..

3. Цилиндрический сосуд, присоединённый к миллиманометру сожмем руками, уменьшая его объём (рис.3). Считая температуру газа постоянной, напишите, как зависит давление газа от объёма.

Вывод:……………….

4. Соединим насос с камерой от мяча и закачаем несколько порций воздуха (рис.4). Как изменилось давление объём и температура закаченного в камеру воздуха?

Вывод:………………..

5. Нальём в бутылку около 2 см 3 спирта, закроем пробкой со шлангом (рис. 5) , прикреплённым к нагнетающему насосу. Сделаем несколько качков до момента вылета пробки из бутылки. Как изменяются давление объём и температура воздуха (и паров спирта) после вылета пробки?



Вывод:………………..

Часть работы.

Проверка закона Гей - Люссака.

1. Нагретую стеклянную трубку достаём из горячей воды и опускаем открытым концом в небольшой сосуд с водой.

2. Удерживаем трубку вертикально.

3. По мере охлаждения воздуха в трубке вода из сосуда заходит в трубку (рис 6).

4. Находим и

Длина трубки и столба воздуха (в начале опыта)

Объём тёплого воздуха в трубке,

Площадь поперечного сечения трубки.

Высота столба воды, зашедшей в трубке при остывании воздуха в трубке.

Длина столба холодного воздуха в трубке

Объём холодного воздуха в трубке.

На основании закона Гей-Люссака У нас для двух состояний воздуха

Или (2) (3)

Температура горячей воды в ведре

Комнатная температура

Нам нужно проверить уравнение (3) и, следовательно закон Гей – Люссака.

5. Вычислим

6. Находим относительную погрешность измерения при измерении длины принимая Dl=0.5 см.

7. Находим абсолютную погрешность отношения

=……………………..

8. Записываем результат показания

………..…..

9. Находим относительную погрешность измерения Т, принимая

10. Находим абсолютную погрешность вычисления

11. Записываем результат вычисления

12. Если интервал определения отношения температур (хотя бы частично) совпадает с интервалом определения отношения длин столбов воздуха в трубке, то уравнение (2) справедливо и воздух в трубке подчиняется закону Гей- Люссака.

Вывод:……………………………………………………………………………………………………

Требование к отчёту:

1. Название и цель работы.

2. Перечень оборудования.

3. Нарисовать рисунки с приложения и сделать выводы для опытов 1, 2, 3, 4.

4. Написать содержание, цель, расчёты второй части лабораторной работы.

5. Написать вывод по второй части лабораторной работы.

6. Построить графики изопроцессов (для опытов 1,2,3) в осях: ; ; .

7. Решить задачи:

1. Определить плотность кислорода, если его давление равно 152 кПа, а средняя квадратичная скорость его молекул -545 м/с.

2. Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объём 500 л. Найти объём газа при нормальных условиях.

3. Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и давлении 5,07 МПа.

Приложение

Похожие публикации