Интернет-журнал дачника. Сад и огород своими руками

Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении. Вихревой теплогенератор – новый источник тепла в доме

Добавить сайт в закладки

Теплоустановка Потапова

Теплогенератор Потапова не известен широким народным массам и еще мало изучен с научной точки зрения. Впервые попробовать осуществить пришедшую в голову идею Юрий Семенович Потапов осмелился уже ближе к концу восьмидесятых годов прошлого столетия. Исследования проводились в городе Кишиневе. Исследователь не ошибся, и результаты попыток превзошли все его ожидания.

Готовый теплогенератор удалось запатентовать и пустить в общее пользование лишь в начале февраля 2000 года.

Все имеющиеся мнения в отношении созданного Потаповым теплогенератора достаточно сильно расходятся. Кто-то считает его практически мировым изобретением, приписывают ему очень высокую экономичность при эксплуатации - до 150%, а в отдельных случаях и до 200% экономии энергии. Считают, что практически создан неиссякаемый источник энергии на Земле без вредных последствий для окружающей среды. Другие же утверждают обратное - мол, все это шарлатанство, и теплогенератор, на самом деле, требует ресурсов даже больше, чем при использовании его типовых аналогов.

По некоторым источникам, разработки Потапова запрещены в России, Украине и на территории Молдовы. По другим источникам, все-таки, на настоящий момент в нашей стране термогенераторы подобного типа выпускают несколько десятков заводов и продаются они по всему миру, давно пользуются спросом и занимают призовые места на различных технических выставках.

Описательная характеристика строения теплогенератора

Представить, как выглядит теплогенератор Потапова можно, тщательно изучив схему его строения. Тем более, что состоит он из достаточно типовых деталей, и о чем идет речь, понять будет не сложно.

Итак, центральной и самой основательной частью теплогенератора Потапова является его корпус. Он занимает центральное положение во всей конструкции и имеет цилиндрическую форму, установлен он вертикально. К нижней части корпуса, его фундаменту, торцом присоединен циклон для зарождения в нем вихревых потоков и увеличения скорости продвижения жидкости. Поскольку установка в основе своего действия имеет большие скоростные явления, то в ее конструкции необходимо было предусмотреть элементы, тормозящие весь процесс для более удобного управления.

Для таких целей в противоположной стороне от циклона к корпусу присоединяется специальное тормозное устройство. Оно тоже цилиндрической формы, в центре его установлена ось. На оси по радиусам прикреплены несколько ребер, количеством от двух. Следом за тормозным устройством предусмотрено дно, снабженное выходным отверстием для жидкости. Далее по ходу отверстие преобразуется в патрубок.

Это основные элементы теплогенератора, все они расположены в вертикальной плоскости и плотно соединены. Дополнительно патрубок для выхода жидкости оснащен перепускным патрубком. Они плотно скреплены и обеспечивают контакт двух концов цепочки основных элементов: то есть патрубок верхней части соединен с циклоном в нижней части. В месте сцепления перепускного патрубка с циклоном предусмотрено добавочное малое тормозное устройство. К торцевой части циклона под прямым углом к оси основной цепочки элементов прибора присоединен инжекционный патрубок.

Инжекционный патрубок предусмотрен конструкцией устройства с целью соединения насоса с циклоном, приводящими и отводящими трубопроводами для жидкости.

Прототип теплогенератора Потапова

Вдохновителем Юрия Семеновича Потапова на создание теплогенератора стала вихревая труба Ранка. Труба Ранка была изобретена с целью разделения горячей и холодной масс воздуха. Позже в трубу Ранка стали запускать и воду с целью получения аналогичного результата. Вихревые потоки брали свое начало в так называемой улитке - конструктивной части прибора. В процессе применения трубы Ранка было замечено, что вода после прохождения улиткообразного расширения прибора изменяла свою температуру в положительную сторону.

На это необычное, до конца не обоснованное с научной точки зрения явление и обратил внимание Потапов, применив его для изобретения теплогенератора с одним лишь небольшим отличием в результате. После прохождения воды через вихрь ее потоки не резко делились на горячий и холодный, как это происходило с воздухом в трубе Ранка, а на теплый и горячий. В результате некоторых измерительных исследований новой разработки Юрий Семенович Потапов выяснил, что самая энергозатратная часть всего прибора - электрический насос - затрачивает намного меньше энергии, чем ее вырабатывается в результате работы. В этом и заключается принцип экономичности, на котором основан теплогенератор.

Физические явления, на основе которых действует теплогенератор

В общем-то, в способе действия теплогенератора Потапова ничего сложного или необычного нет.

Принцип действия этого изобретения основан на процессе кавитации, отсюда его еще называют вихревым теплогенератором. Кавитация основана на образовании пузырьков воздуха в толще воды, вызванном силой вихревой энергии потока воды. Образование пузырьков всегда сопровождается специфическим звуком и образованием некой энергии в результате их ударов на большой скорости. Пузырьки представляют собой полости в воде, заполненные испарениями от воды, в которой они сами и образовались. Жидкость оказывает постоянное давление на пузырек, соответственно, он стремится перемещаться из области высокого давления в область низкого, дабы уцелеть. В итоге, он не выдерживает давления и резко сжимается или «лопается», при этом выплескивая энергию, образующую волну.

Выделяемая «взрывная» энергия большого количества пузырьков обладает такой силой, что способна разрушить внушительные металлические конструкции. Именно такая энергия и служит добавочной при нагреве. Для теплогенератора предусмотрен полностью закрытый контур, в котором образуются пузырьки очень малого размера, лопающиеся в толще воды. Они не обладают такой разрушительной силой, но обеспечивают прирост тепловой энергии до 80%. В контуре обеспечивается поддержание переменного тока напряжением до 220В, целостность важных для процесса электронов при этом сохраняется.

Как уже было сказано, для работы тепловой установки необходимо образование «водяного вихря». За это отвечает встроенный в тепловую установку насос, который образовывает необходимый уровень давления и с силой направляет его в рабочую емкость. Во время возникновения завихрения в воде происходят определенные перемены с механической энергией в толще жидкости. В результате начинает устанавливаться одинаковый температурный режим. Дополнительная энергия создается, по Эйнштейну, переходом некой массы в необходимое тепло, весь процесс сопровождается холодным ядерным синтезом.

Принцип действия теплогенератора Потапова

Для полного понимания всех тонкостей в характере работы такого устройства, как теплогенератор, следует рассмотреть поэтапно все стадии процесса нагрева жидкости.

В системе теплогенератора насос создает давление на уровне от 4 до 6 атм. Под созданным давлением вода с напором поступает в инжекционный патрубок, присоединенный к фланцу запущенного центробежного насоса. Поток жидкости стремительно врывается в полость улитки, подобной улитке в трубе Ранка. Жидкость, как и в проделанном с воздухом опыте, начинает быстро вращаться по изогнутому каналу для достижения эффекта кавитации.

Следующий элемент, который содержит теплогенератор и куда попадает жидкость - это вихревая труба, в этот момент вода уже достигла одноименного характера и движется стремительно. В соответствии с разработками Потапова, длина вихревой трубы в разы превышает размеры ее ширины. Противоположный край вихревой трубы является уже горячим, туда-то и направляется жидкость.

Чтобы достичь необходимой точки, она проходит свой путь по винтообразно закрученной спирали. Винтовая спираль располагается около стенок вихревой трубы. Через мгновение жидкость достигает своего пункта назначения - горячей точки вихревой трубы. Этим действием завершается движение жидкости по основному корпусу устройства. Следом конструктивно предусмотрено основное тормозное устройство. Это устройство предназначено для частичного вывода горячей жидкости из обретенного ею состояния, то есть поток несколько выравнивается благодаря радиальным пластинам, закрепленным на втулке. Втулка имеет внутреннюю пустую полость, которая соединяется с малым тормозным устройством, следующим за циклоном в схеме строения теплогенератора.

Вдоль стенок тормозного устройства горячая жидкость все ближе продвигается к выходу из устройства. Тем временем, по внутренней полости втулки основного тормозного устройства навстречу потоку горячей жидкости протекает вихревой поток отведенной холодной жидкости.

Времени контакта двух потоков через стенки втулки достаточно, чтобы нагреть холодную жидкость. И теперь уже теплый поток направляется к выходу через малое тормозное устройство. Дополнительный нагрев теплого потока осуществляется во время прохождения его по тормозному устройству под действием явления кавитации. Хорошо прогретая жидкость готова выйти из малого тормозного устройства по байпасу и пройти по основному отводящему патрубку, соединяющему два конца основной цепи элементов теплового устройства.

Горячий теплоноситель также направляется на выход, но в противоположном направлении. Вспомним, что к верхней части тормозного устройства прикрепляется дно, в центральной части дна предусмотрено отверстие с диаметром, равным диаметру вихревой трубы.

Вихревая труба, в свою очередь, соединена отверстием в дне. Следовательно, горячая жидкость заканчивает свое движение по вихревой трубе проходом в отверстие дна. После горячая жидкость попадает в основной отводящий патрубок, где смешивается с теплым потоком. На этом движение жидкостей по системе теплогенератора Потапова закончено. На выход из нагревателя вода поступает с верхней части отводного патрубка - горячая, а из нижней его части - теплая, в нем же она смешивается, готовая к использованию. Горячая вода может применяться либо в водопроводе для хозяйственных нужд, либо в качестве теплоносителя в системе отопления. Все этапы работы теплогенератора проходят в присутствии эфира.

Особенности применения теплогенератора Потапова для отопления помещений

Как известно, нагретую воду в термогенераторе Потапова можно использовать в различных бытовых целях. Достаточно выгодным и удобным может быть применение теплогенератора в качестве конструктивной единицы отопительной системы. Если исходить из указанных экономических параметров установки, то ни одно другое устройство не сравнится по экономии.

Итак, при использовании теплогенератора Потапова для нагрева теплоносителя и пуска его в систему предусмотрен следующий порядок: отработанная уже жидкость с более низкой температурой от первичного контура снова поступает в центробежный насос. В свою очередь, центробежный насос отправляет теплую воду через патрубок непосредственно в систему отопления.

Преимущества теплогенераторов при использовании для отопления

Наиболее явное преимущество теплогенераторов - достаточно простое обслуживание, несмотря на возможность свободной установки без спроса специального разрешения на то у сотрудников электросетей. Достаточно раз в полгода проверить трущиеся детали устройства - подшипники и сальники. При этом, по заявлениям поставщиков, средний гарантированный срок службы - до 15 лет и более.

Теплогенератор Потапова отличается полной безопасностью и безвредностью для окружающей среды и использующих его людей. Экологичность обоснована тем, что при работе кавитационного теплогенератора исключаются выбросы в атмосферу вреднейших продуктов от переработки природного газа, твердотопливных материалов и дизельного топлива. Они просто не используются.

Подпитка работы происходит от электросети. Исключается возможность возникновения возгорания по причине отсутствия контакта с открытым огнем. Дополнительную безопасность обеспечивает приборная панель устройства, с ней производится тотальный контроль за всеми процессами изменения температуры и давления в системе.

Экономическая эффективность при отоплении помещения теплогенераторами выражается в нескольких преимуществах. Во-первых, не нужно заботиться о качестве воды, когда она играет роль теплоносителя. Думать о том, что она причинит вред всей системе только по причине ее низкого качества, не придется. Во-вторых, финансовых вложений в обустройство, прокладку и обслуживание тепловых трасс делать не нужно. В третьих, нагрев воды с использованием физических законов и применения кавитации и вихревых потоков полностью исключает появления кальциевых камней на внутренних стенках установки. В четвертых, исключаются траты денежных средств на транспортировку, хранение и приобретение ранее необходимых топливных материалов (природного угля, твердотопливных материалов, нефтяных продуктов).

Неоспоримое преимущество теплогенераторов для домашнего пользования заключается в их исключительной универсальности. Спектр применения теплогенераторов в бытовом обиходе очень широк:

  • в результате прохождения через систему вода преобразуется, структурируется, а болезнетворные микробы в таких условиях погибают;
  • водой из теплогенератора можно поливать растения, что будет способствовать их бурному росту;
  • теплогенератор способен нагреть воду до температуры, превышающей точку кипения;
  • теплогенератор может работать в совокупности с уже используемыми системами или быть встроенным в новую отопительную систему;
  • теплогенератор уже давно используется осведомленными о нем людьми в качестве основного элемента отопительной системы в домах;
  • теплогенератор легко и без особых затрат подготавливает горячую воду для использования ее в хозяйственных нуждах;
  • теплогенератор может нагревать жидкости, используемые по различным назначениям.

Совершенно неожиданным преимуществом является то, что теплогенератор можно применять даже для переработки нефти. Ввиду уникальности разработки, вихревая установка способна разжижать тяжелые пробы нефти, провести подготовительные мероприятия перед транспортировкой на нефтеперерабатывающие заводы. Все указанные процессы проводятся с минимальными затратами.

Следует отметить способность теплогенераторов к абсолютно автономной работе. То есть режим интенсивности его работы можно задать самостоятельно. К тому же, все конструкции теплогенератора Потапова очень просты при монтаже. Привлекать работников сервисных организаций не потребуется, все операции по установке можно проделать самостоятельно.

Самостоятельная установка теплогенератора Потапова

Для установки своими руками вихревого теплогенератора Потапова в качестве основного элемента отопительной системы требуется достаточно мало инструментов и материалов. Это при условии, что разводка самой отопительной системы уже готова, то есть регистры подвешены под окнами и соединены между собой трубами. Остается только подключить устройство, подающее горячий теплоноситель. Необходимо подготовить:

  • хомуты - для плотного соединения труб системы и труб теплогенератора, типы соединений будут зависеть от используемых материалов труб;
  • инструменты для холодной или горячей сварки - при использовании труб с обеих сторон;
  • герметик для уплотнения соединений;
  • плоскогубцы для утяжки хомутов.

При установке теплогенератора предусмотрена диагональная разводка труб, то есть по ходу движения горячий теплоноситель будет подаваться в верхний патрубок батареи, проходить через нее, а остывающий теплоноситель будет выходить из противоположного нижнего патрубка.

Непосредственно перед установкой теплогенератора необходимо убедиться в целостности и исправности всех его элементов. Затем выбранным способом нужно подсоединить подающий воду патрубок к подающему в систему. То же самое проделать с отводящими патрубками - соединить соответствующие. Затем следует позаботиться о подключении в систему отопления необходимых контролирующих приборов:

  • предохранительный клапан для поддержания давления системы в норме;
  • циркуляционный насос для принуждения движения жидкости по системе.

После теплогенератор подключается к электропитанию напряжением 220В, и проводится заполнение системы водой при открытых воздушных задвижках.

Вихревые теплогенераторы - это устройства, с помощью которых можно довольно просто обогревать жилое помещение. Достигается это только за счет использования электродвигателя, а также насоса. В целом данное устройство можно назвать экономичным, и больших затрат оно за собой не влечет. Стандартная схема подключения вихревого теплогенератора подразумевает использование насоса циркуляционного типа. В верней части должен располагаться обратный клапан. За счет этого способен выдерживать большое давление.

Отопительные приборы для обогрева могут использоваться разнообразные. Наиболее часто применяются радиаторы, а также конвекторы. Также неотъемлемой частью системы любой модели принято считать блок управления с термодатчиком и грязевиком. Чтобы собрать вихревой теплогенератор своими руками, необходимо более подробно ознакомиться с наиболее известными его модификациями.

Модель с радиальной камерой

Изготовить с радиальной камерой вихревой теплогенератор своими руками (чертежи и схемы показаны ниже) довольно сложно. В данном случае ротор необходимо подбирать мощный и максимальное давление он обязан выдерживать не менее 3 бар. Также следует изготовить корпус для устройства. Толщина металла обязана составлять как минимум 2,5 мм. При этом выход в диаметре должен равняться 5,5 см. Все это позволит успешно приварить устройство к патрубку.

Выходной клапан располагается в приборе не сильно далеко от края фланца. Также следует подобрать для модели улитку. Как правило, в данном случае она используется стального типа. Для того чтобы она стерлась, ее концы необходимо заранее обточить. Уплотнитель в этой ситуации можно использовать резиновый. Минимум его толщина должна составлять 2,2 мм. Диаметр выхода, в свою очередь, приветствуется на уровне 4,5 см. Отдельно необходимо уделить внимание диффузору. При помощи данного устройства теплый воздух попадает в камеру. Отличается радиальная модификация тем, что у нее имеется множество канальцев. Самостоятельно их нарезать можно при помощи станка.

Теплогенераторы вихревого типа с С-образной камерой

Изготавливается с С-образной камерой вихревой для дома при помощи сварочного аппарата. В данном случае необходимо в первую очередь собрать корпус под улитку. При этом крышка должна отсоединяться отдельно. Для этого некоторые специалисты советуют нарезать резьбу. Диффузор используется небольшого диаметра. Уплотнитель применяется только у выходного отверстия. Всего клапанов в системе должно быть предусмотрено два. Закрепить улитку на корпусе можно при помощи болта. Однако важно зафиксировать на ней защитное кольцо. Выходное отверстие от ротора обязано располагаться на расстоянии около 3,5 см.

Теплогенераторы вихревого типа Потапова

Собирается вихревой теплогенератор Потапова своими руками при помощи ротора на двух дисках. Минимум его диаметр обязан составлять 3,5 см. При этом статоры чаще всего устанавливаются чугунного типа. Корпус для устройства можно подобрать стальной, однако толщина металла в данном случае минимум обязана составлять около 2,2 мм. Кожух для вихревого теплогенератора подбирается толщиною примерно 3 мм. Все это необходимо для того, чтобы улитка над ротором сидела довольно плотно. При этом зажимное кольцо важно использовать также плотное.

На выходе устанавливается кожух, однако его толщина обязана равняться примерно 2,2 мм. Для того чтобы закрепить кольцо, необходимо использовать втулку. Штуцер в данном случае должен находиться над улиткой. Диффузоры для этого устройства используются самые простые. При этом клапанов механизме имеется только два. Один их них обязан располагаться над ротором. При этом минимальный зазор у камеры должен составлять 2 мм. Крышка чаще всего снимается по резьбе. Электродвигатель для устройства подирают мощностью не менее 3 кВт. За счет этого предельное давление в системе способно возрасти до 5 бар.

Сборка модели на два выхода

Сделать вихревой кавитационный теплогенератор своими руками можно с электродвигателем мощностью около 5 кВт. Корпус для устройства необходимо подбирать чугунного типа. В данном случае минимальный диаметр выхода обязан составлять 4,5 см. Роторы для этой модели подходят только на два диска. При этом статор важно использовать ручной модификации. Устанавливается он в вихревом теплогенераторе над улиткой.

Непосредственно диффузор целесообразнее использовать небольшой. Обточить его при желании можно с трубы. Прокладку под улитку лучше использовать толщиною около 2 мм. Однако в данной ситуации многое зависит от сальников. Устанавливать их надо сразу над центральной втулкой. Для того чтобы воздух быстро прогонялся, важно сделать дополнительную стойку. При этом крышка для устройства подбирается на резьбе.

Теплогенераторы вихревого типа на три выхода

Собирается на три выхода вихревой теплогенератор своими руками (чертежи показаны ниже) так же, как предыдущая модификация. Однако разница заключается в том, что ротор для устройства необходимо подбирать на одном диске. При этом клапанов в механизме чаще всего используются три. Сальники для набивки применяются только в крайнем случае.

Некоторые специалисты также советуют использовать пластиковые уплотнители для улитки. По влагозащищенности они подходят идеально. Также следует под крышкой устанавливать защитное кольцо. Все это необходимо для того, чтобы уменьшить износ штуцера. Электродвигатели на вихревые теплогенераторы в основном подбираются с мощностью около 4 кВт. Муфта должна быть предусмотрена довольно упругая. Также напоследок следует отметить, что у основания улитки устанавливается фланец.

Модель с коллектором

Собирать с коллектором вихревой теплогенератор своими руками необходимо с подготовки корпуса. В данном случае выходов должно быть предусмотрено два. Дополнительно следует аккуратно обточить входное отверстие. Крышку в этой ситуации важно подбирать отдельно с резьбой. Электродвигатели с коллектором в основном устанавливают средней мощности. В такой ситуации расход электроэнергии будет незначительный.

Улитка подбирается стального типа и устанавливается сразу на прокладку. Для того чтобы подогнать ее под выходное отверстие, лучше всего воспользоваться напильником. При этом для сооружения корпуса необходимо иметь сварочный инвертор. Коллектор, так же как и улитка, должен стоять на прокладке. При этом втулка закрепляется в модели при помощи зажимного кольца.

Теплогенераторы вихревого типа с тангенциальными каналами

Чтобы собирать с тангенциальными каналами вихревые теплогенераторы своими руками, необходимо подобрать в первую очередь хороший уплотнитель. Благодаря этому устройство максимально долго будет держать температуру. Двигатель чаще всего монтируется мощностью около 3 кВт. Все это дает хорошую производительность, если правильно установить улитку и диффузор.

Подгоняется сальник в данном случае до самого ротора. Для того чтобы его закрепить, многие специалисты рекомендуют пользоваться двухсторонними шайбами. При этом зажимные кольца также устанавливаются. Если втулка для штуцера не подходит, то ее можно обточить. Сделать камеру с каналами есть возможность резаком.

Применение однонаправленных закруток

Собираются с однонаправленными закрутками вихревые теплогенераторы своими руками довольно просто. В данном случае работу необходимо стандартно начинать с подготовки корпуса устройства. Многое в этой ситуации зависит от габаритов электродвигателя. Коллекторы, в свою очередь, применяются довольно редко.

Устанавливается однонаправленная закрутка только после того, как будет зафиксирован фланец. В свою очередь, кожух используется только у входного отверстия. Все это необходимо для того, чтобы уменьшить износ втулки. В целом однонаправленные закрутки позволяют не использовать штуцеры. При этом сборка вихревого теплогенератора обойдется недорого.

Использование кольцевых втулок

Собрать с кольцевыми втулками вихревой теплогенератор своими руками получится только при помощи сварочного инвертора. В данном случае необходимо заранее подготовить выходное отверстие. Фланец в устройство следует устанавливать только на зажимном кольце. Также важно подобрать для прибора качественное масло. Все это необходимо для того, чтобы износ кольца не был значительным. Втулка в данном случае устанавливается непосредственно под улитку. При этом крышка для нее используется довольно редко. В этой ситуации необходимо заранее рассчитать расстояние до стойки. Задевать муфту она не должна.

Модификация с приводным механизмом

Для того чтобы сделать с приводным механизмом вихревой теплогенератор своими руками, в первую очередь необходимо подобрать хороший электродвигатель. Мощность его обязана составлять минимум 4 кВт. Все это даст хорошую теплопроизводительность. Корпуса для устройства чаще всего используются чугунные. В данном случае выходные отверстия необходимо обтачивать отдельно. Для этого можно воспользоваться напильником. Ротор для электродвигателя целесообразнее подбирать ручного типа. Крепиться муфта обязана на защитной шайбе. Улитку многие специалисты советуют устанавливать только после диффузора.

Таким образом, появится возможность положить уплотнитель на верхнюю крышку. Непосредственно приводной механизм должен располагаться над электродвигателем. Однако на сегодняшний день встречаются модификации с боковой его установкой. Стойки в данном случае необходимо приварить с обоих концов. Все это значительно повысит прочность устройства. В последнюю очередь важно заняться установкой ротора. На этом этапе особое внимание необходимо уделить фиксации кожуха.

Поиски альтернативного способа получения энергии порождают многочисленные изобретения, суть которых не совсем ясна обычным обывателям. При этом разговоры о 110, 200 и даже 400 % КПД создают ажиотаж вокруг этих разработок. Эта тенденция не обошла стороной и вихревые теплогенераторы, которые появились на рынке отопительных систем в 90-х годах прошлого века. Что же представляет из себя это чудо-устройство?

Как говорят многочисленные источники – вихревой теплогенератор успешно преобразовывает электроэнергию в тепловую. Точный механизм этого процесса не описан о сих пор, но его родоначальником считается ученый Григгс, который и создал первую модель такого генератора. Устройство представляло собой электрический двигатель с двухсторонним ротором, при прохождении воздуха через который происходила его очистка.

Но во время испытаний было замечено разделение воздушных потоков, один из которых имеет высокую температуру. Впоследствии была попытка применения воды в качестве среды обработки. Это нововведение и послужило началом современных моделей вихревых теплогенераторов.

Возможный принцип их работы показан на рисунке:

Вода, поступающая к ротору, при попадании в вихревые потоки начинает генерацию процесса кавитации. Он характеризуется образованием небольших по размерам пузырьков воздуха, на границах которых возникает высокая температура. Они могут являться источниками нагрева жидкости. В дальнейшем масса воды с более высокой температурой поступает в конденсационный сборник или . Остальная холодная по трубам вновь направляется к ротору. При этом она может смешиваться с уже остывшим теплоносителем из обратной трубы системы отопления.

Производством подобных систем занимаются несколько предприятий. В основном их продукция предназначена для организации отопления больших площадей, но встречаются и бытовые модели.

Вихревые теплосистемы

Удмуртское предприятие ООО «Вихревые теплосистемы» уже довольно давно выпускает подобные приборы нагрева воды. В ассортименте их продукции можно найти и небольшие по мощности установки и комплексы по глобальному решению вопроса отопления больших зданий и производственных помещений.

ВТГ – 2,2

Это самая маломощная установка из всех, которые выпускает компания. Она рассчитана на обогрев помещения с объемом до 90 м³. Принцип действия не отличается от вышеописанного – на ротор двигателя устанавливается специальный шнек, через который проходит водяной поток. После нагрева теплоноситель попадает в систему отопительных труб.

Его стоимость составляет около 34 тыс.руб.

ВТГ – 2,2 Характеристики

ВТГ – 30

Средняя модель вихревого теплогенератора. Она рассчитана на большие помещения, чем предыдущая – до 1 400 м³. Вместе с ней рекомендуется приобретать шкаф управления, который предназначен для автоматизации всего процесса нагрева жидкости.

Стоимость – 150 тыс.руб.

В настоящее время линейка продукции компании включает более 16 моделей теплогенераторов, отличающихся мощностью.

ВТГ – 30 Характеристики

ИПТО

Небольшая производственная компания из Ижевска «ИПТО» также наладила выпуск вихревых теплогенераторов.

Теплогенератор ИПТО состоит из электродвигателя и цилиндрической насадки. Конструкция последней представляет собой циклон с тангенциальным входом. Двигатель работает в режиме насоса, нагнетая водяные массы в цилиндрическую насадку. Там они создают вихревой поток, который впоследствии останавливается тормозным устройством. На этом этапе и происходит нагрев теплоносителя.

ИПТО Характеристики и цены

Как заявляют производители, КПД их продукции превышает 100%. Для некоторых моделей показатели равны 150%. Испытания проводились на технических площадках специализированных институтов – РКК «Энергия» и в ЦАГЕ им. . Однако точные данные на сайте производителя не представлены.

Данные компании являются самыми большими производителями вихревых теплогенераторов. Но помимо них существует множество фирм, которые на производственной базе различных предприятий готовы изготовить аналоги теплогенераторов.

Для отопления частного дома и квартиры, часто используются автономные генераторы. Предлагаем рассмотреть, что такое индукционный вихревой теплогенератор, его принцип работы, как сделать устройство своими руками, а также чертежи приборов.

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Фото – Мини-теплогенератор вихревого типа

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).


Фото – Вихревой теплогенератор

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

Фото – Схема вихревого теплогенератора

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.


Фото – Принцип работы генератора гидротипа

Достоинства вихревого теплогенератора :

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы : это высокая стоимость и редкое применение на практике.

Как сделать теплогенератор своими руками

Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.

Фото – Вихревой теплогенератор Потапова

Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.

На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.

Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.

Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.

По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.

Формула представляет собой следующее:

Епот = – 2 Екин

Где Екин =mV2/2 – это кинетическое движения Солнца;

Масса планеты – m, кг.

Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:


Фото – Модификации вихревых теплогенераторов

Обзор цен

Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.

Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:

Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы. Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

КПД таких установок иногда превышает 100%. Средой для генераторов может быть жидкость, сжатый газ, тосол, антифриз.

Разница между температурой входа и выхода может достигать 100⁰С. При работе на сжатом газе, его вдувают по касательной в вихревую камеру. В ней он ускоряется. При создании вихря, горячий воздух проходит сквозь коническую воронку, а холодный возвращается. Температура может достигать 200⁰С.

Достоинства:

  1. Может обеспечить большую разность температур на горячем и холодном концах, работать при низком давлении.
  2. КПД не ниже 90%.
  3. Никогда не перегревается.
  4. Пожаро,- и взрывобезопасен. Может использоваться во взрывоопасной среде.
  5. Обеспечивает быстрый и эффективный нагрев всей системы.
  6. Может использоваться как для обогрева, так и для охлаждения.

В настоящее время применяется недостаточно часто. Используют кавитационный теплогенератор, чтобы удешевить отопление дома или производственных помещений при наличии сжатого воздуха. Недостатком остается довольно высокая стоимость оборудования.

Теплогенератор Потапова

Популярным и более изученным является изобретение теплогенератора Потапова. Он считается статическим устройством.

Сила давления в системе создается центробежным насосом. Струя воды подается с большим напором в улитку. Жидкость начинает разогреваться благодаря вращению по изогнутому каналу. Она попадает в вихревую трубу. Метраж трубы должен быть больше ширины в десятки раз.

Схема устройства генератора

  1. Патрубок
  2. Улитка.
  3. Вихревая труба.
  4. Верхний тормоз.
  5. Выпрямитель воды.
  6. Соединительная муфта.
  7. Нижнее тормозное кольцо.
  8. Байпас.
  9. Отводная линия.

Вода проходит по расположенной вдоль стенок винтовой спирали. Дальше поставлено тормозное устройство для выведения части горячей воды. Струя немного разравнивается пластинами, прикрепленными к втулке. Внутри имеется пустое пространство, соединенное с еще одним тормозным устройством.

Вода с высокой температурой поднимается, а холодный вихревой поток жидкости спускается по внутреннему пространству. Холодный поток соприкасается с горячим через пластины на втулке и нагревается.

Теплая вода спускается к нижнему тормозному кольцу и еще подогревается благодаря кавитации. Подогретый поток от нижнего тормозного устройства проходит через байпас в отводящий патрубок.

Верхнее тормозное кольцо имеет проход, диаметр которого равен поперечнику вихревой трубы. Благодаря ему горячая вода может попасть в патрубок. Происходит смешивание горячего и теплого потока. Дальше вода используется по назначению. Обычно для обогрева помещений или бытовых нужд. Обрат присоединяется к насосу. Патрубок – к входу в систему отопления дома.

Чтобы установить теплогенератор Потапова, необходима диагональная разводка. Горячий теплоноситель нужно подавать в верхний ход батареи, а из нижнего будет выходить холодный.

Генератор Потапова собственными силами

Существует много промышленных моделей генератора. Для опытного мастера не составит труда изготовить вихревой теплогенератор своими руками :

  1. Вся система должна быть надежно закреплена. При помощи уголков изготавливают каркас. Можно использовать сварку или болтовое соединение. Главное, чтобы конструкция была прочной.
  2. На станине укрепляют электродвигатель. Его подбирают соответственно площади помещения, внешним условиям и имеющемуся напряжению.
  3. На раме крепится водяной насос. При его выборе учитывают:
  • насос необходим центробежный;
  • у двигателя хватит сил для его раскрутки;
  • насос должен выдерживать жидкость любой температуры.
  1. Насос присоединяется к двигателю.
  2. Из толстой трубы диаметром 100 мм изготавливается цилиндр длиной 500-600 мм.
  3. Из толстого плоского металла необходимо изготовить две крышки:
  • одна должна иметь отверстие под патрубок;
  • вторая под жиклер. На краю делается фаска. Получается форсунка.
  1. Крышки к цилиндру лучше крепить резьбовым соединением.
  2. Жиклер находится внутри. Его диаметр должен быть в два раза меньше ¼ части диаметра цилиндра.

Очень маленькое отверстие приведет к перегреву насоса и быстрому износу деталей.

  1. Патрубок со стороны форсунки подключается к подаче насоса. Второй подключают к верхней точке системы отопления. Остывшая вода из системы подключается к входу насоса.
  2. Вода под давлением насоса подается в форсунку. В камере теплогенератора ее температура увеличивается благодаря вихревым потокам. Потом она подается в отопление.

Схема кавитационного генератора

  1. Жиклер.
  2. Вал электродвигателя.
  3. Вихревая труба.
  4. Входящая форсунка.
  5. Отводящий патрубок.
  6. Гаситель вихрей.

Для регулирования температуры, за патрубком ставят задвижку. Чем меньше она открыта, тем дольше вода в кавитаторе, и тем выше ее температура.

При прохождении воды через жиклер, получается сильный напор. Он бьет в противоположную стену и за счет этого закручивается. Поместив в середину потока дополнительную преграду, можно добиться большей отдачи.

Гаситель вихрей

На этом основана работа гасителя вихрей:

  1. Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
  2. Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
  3. Пластины закрепляются внутрь колец друг напротив друга.
  4. Гаситель вставляется напротив сопла.

Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.

В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.

Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:

  • окрасить все металлические поверхности;
  • изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
  • во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
  • до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Видео. Вихревой теплогенератор своими руками.

Налаживается производство таких генераторов. Современная промышленность предлагает роторные генераторы и статические. Они оборудованы приборами контроля и датчиками защиты. Можно подобрать генератор, чтобы смонтировать отопление помещений любой площади.

Научные лаборатории и народные умельцы продолжают эксперименты по усовершенствованию теплогенераторов. Возможно, скоро вихревой теплогенератор займет свое достойное место среди приборов отопления.

Похожие публикации