Интернет-журнал дачника. Сад и огород своими руками

Сложение дробей с целым числом. Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)

Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

Как найти значение выражения где знаменатели разные

В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
3 2/7+6 1/3

Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
3 6/21+6 7/21=9 15/21
Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
2 1/3+3 2/3
В данном случае складываем целые части и дробные, получаем:
5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

С нахождением суммы всё понятно, разберём вычитание:

Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

  • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

Попробуем самостоятельно вычислить значение выражений:

Разберём подробнее пример под буквой «м»:

4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
3 16/11-2 8/11=1 целая 8/11

  • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

Подведём итог:

Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.

    Чтобы к дроби прибавить целое число, достаточно выполнить ряд действий, а вернее подсчетов.

    К примеру у вас 7 - целое число, его нужно прибавить к дроби 1/2.

    Действуем следующим образом:

    • 7 умножаем на знаменатель (2), получается 14,
    • к 14 прибавляем верхнюю часть (1), выходит 15,
    • и подставляем знаменатель.
    • в итоге получается 15/2.

    Таким нехитрым способом можно прибавлять целые числа к дробным.

    А чтобы выделить целое число из дроби, надо поделить числитель на знаменатель, а остаток - и будет дробь.

    Операция прибавления к правильной обыкновенной дроби целого числа не сложна и подчас заключается просто в образовании смешанной дроби, в которой целая часть ставится левее дробной части, например такая дробь будет смешанной:

    Однако чаще при добавлении к дроби целого числа получается неправильная дробь, у которой числитель оказывается больше знаменателя. Выполняется эта операция так: целое число представляют в виде неправильной дроби с тем же знаменателем, что и прибавляемая дробь и потом просто складывают числители обеих дробей. На примере это буду выглядеть так:

    5+1/8 = 5*8/8+1/8 = 40/8+1/8 = 41/8

    По-моему это очень просто.

    Например, мы имеем дробь 1/4 (это то же самое, что 0,25, то есть четверть от целого числа).

    И к этой четверти можно прибавить любое целое число, например 3. Получится три с четвертью :

    3,25. Или в дроби это выражается так: 3 1/4

    Вот по образцу этого примера можно складывать любые дроби с любыми целыми числами.

    Нужно возвести целое число в дробь со знаменателем 10 (6/10). Далее, привести имеющуюся дробь к общему знаменателю 10 (35=610). Ну и выполнить операцию как с обычными дробями 610+610=1210 итого 12.

    Можно сделать это двумя способами.

    1). Дробь можно перевести в целое число и осуществить сложение. Например, 1/2 это 0,5; 1/4 равняется 0,25; 2/5 это 0,4 и тд.

    Берем целое число 5, к которому нужно прибавить дробь 4/5. Преобразуем дробь: 4/5 это 4 разделить на 5 и получаем 0,8. Прибавляет 0,8 к 5 и получаем 5,8 или же 5 4/5.

    2). Второй способ: 5 + 4/5 = 29/5 = 5 4/5.

    Сложение дробей простое математическое действие, пример, вам нужно сложить целое число 3 и дробь 1/7. Чтобы сложить эти два числа, у вас должно быть один знаменатель, поэтому вы должны три умножить на семь и разделить на эту цифру, тогда вы получаете 21/7+1/7, знаменатель один, складываете 21 и 1, получается ответ 22/7.

    Просто взять и прибавить целое число к этой дроби.Допустим надо 6+1/2=6 1/2. Ну и если это десятичная дробь то можно например так 6+1,2=7,2.

    Чтобы сложить дробь и целое число, нужно к целому числу прибавить дробное и записать их, в виде комплексного числа, например при сложение обыкновенной дроби с целым числом, получим: 1/2 +3 =3 1/2; при сложении десятичной дроби: 0,5 +3 =3,5.

    Дробь сама по себе не является целым числом, по тому что она по своему количеству до него не дотягивает, а потому и нет необходимости переводить целое число в эту дробь. Поэтому целое число остается целым и полноценно демонстрирует полный номинал, а дробь к нему плюсуется, и демонстрирует то, сколько этому целому числу не хватает до прибавления следующего полного балла.

    Академический пример.

    10 + 7/3 = 10 целых и 7/3.

    Если конечно есть целые, то они суммируются с целыми.

    12 + 5 7/9 = 17 и 7/9.

    Смотря какое целое число и какая дробь.

    Если оба слагаемых положительные , следует приписать к целому числу эту дробь. Получится смешанное число. Причем, могут быть 2 случая.

    Случай 1.

    • Дробь правильная, т.е. числитель меньше знаменателя. Тогда полученное после приписывания смешанное число и будет ответом.

    4/9 + 10 = 10 4/9 (десять целых четыре девятых).

    Случай 2.

    • Дробь неправильная, т.е. числитель больше знаменателя. Тогда требуется небольшое преобразование. Неправильную дробь следует превратить в смешанное число, другими словами выделить целую часть. Делается это так:

    После этого к целому числу нужно прибавить целую часть неправильной дроби и к полученной сумме приписать ее дробную часть. Таким же образом к смешанному числу прибавляется целое.

    1) 11/4 + 5 = 2 3/4 + 5 = 7 3/4 (7 целых три четвертых).

    2) 5 1/2 + 6 = 11 1/2 (11 целых одна вторая).

    Если одно из слагаемых или оба отрицательные , то сложение производим по правилам сложения чисел с разными или одинаковыми знаками. Целое число представляется в виде отношения этого числа и 1, а затем и числитель, и знаменатель умножается на число, равное знаменателю той дроби, к которой целое число прибавляется.

    3) 1/5 + (-2)= 1/5 + -2/1 = 1/5 + -10/5 = -9/5 = -1 4/5 (минус 1 целая четыре пятых).

    4) -13/3 + (-4) = -13/3 + -4/1 = -13/3 + -12/3 = -25/3 = -8 1/3 (минус 8 целых одна третья).

    Замечание.

    После знакомства с отрицательными числами, при изучении действий с ними учащиеся 6 класса должны понимать, что к отрицательной дроби прибавить положительное целое число то же самое, что вычитать из натурального числа дробь. Это действие, как известно, выполняется так:

    На самом деле для того чтобы произвести сложение дроби и целого числа нужно просто напросто привести имеющиеся целое число к дробному, а сделать это проще простого. Нужно просто взять знаменатель дроби (имеющейся в примере) и сделать его знаменателем целого числа, умножив его на этот знаменатель и разделив, вот пример:

    2+2/3 = 2*3/3+2/3 = 6/3+2/3 = 8/3

На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями - одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.

Рассмотрим простейший пример для обыкновенных дробей.

Пример 1. Сложить дроби: .

Решение:

Вспомним правило сложения дробей. Для начала дроби необходимо привести к общему знаменателю. В роли общего знаменателя для обыкновенных дробей выступает наименьшее общее кратное (НОК) исходных знаменателей.

Определение

Наименьшее натуральное число, которое делится одновременно на числа и .

Для нахождения НОК необходимо разложить знаменатели на простые множители, а затем выбрать все простые множители, которые входят в разложение обоих знаменателей.

; . Тогда в НОК чисел должны входить две двойки и две тройки: .

После нахождения общего знаменателя, необходимо для каждой из дробей найти дополнительный множитель (фактически, поделить общий знаменатель на знаменатель соответствующей дроби).

Затем каждая дробь умножается на полученный дополнительный множитель. Получаются дроби с одинаковыми знаменателями, складывать и вычитать которые мы научились на прошлых уроках.

Получаем: .

Ответ: .

Рассмотрим теперь сложение алгебраических дробей с разными знаменателями. Сначала рассмотрим дроби, знаменатели которых являются числами.

Пример 2. Сложить дроби: .

Решение:

Алгоритм решения абсолютно аналогичен предыдущему примеру. Легко подобрать общий знаменатель данных дробей: и дополнительные множители для каждой из них.

.

Ответ: .

Итак, сформулируем алгоритм сложения и вычитания алгебраических дробей с разными знаменателями :

1. Найти наименьший общий знаменатель дробей.

2. Найти дополнительные множители для каждой из дробей (поделив общий знаменатель на знаменатель данной дроби).

3. Домножить числители на соответствующие дополнительные множители.

4. Сложить или вычесть дроби, пользуясь правилами сложения и вычитания дробей с одинаковыми знаменателями.

Рассмотрим теперь пример с дробями, в знаменателе которых присутствуют буквенные выражения.

Пример 3. Сложить дроби: .

Решение:

Поскольку буквенные выражения в обоих знаменателях одинаковы, то следует найти общий знаменатель для чисел . Итоговый общий знаменатель будет иметь вид: . Таким образом, решение данного примера имеет вид:.

Ответ: .

Пример 4. Вычесть дроби: .

Решение:

Если «схитрить» при подборе общего знаменателя не удаётся (нельзя разложить на множители или воспользоваться формулами сокращённого умножения), то в качестве общего знаменателя приходится брать произведение знаменателей обеих дробей.

Ответ: .

Вообще, при решении подобных примеров, наиболее сложным заданием является нахождение общего знаменателя.

Рассмотрим более сложный пример.

Пример 5. Упростить: .

Решение:

При нахождении общего знаменателя необходимо прежде всего попытаться разложить знаменатели исходных дробей на множители (чтобы упростить общий знаменатель).

В данном конкретном случае:

Тогда легко определить общий знаменатель: .

Определяем дополнительные множители и решаем данный пример:

Ответ: .

Теперь закрепим правила сложения и вычитания дробей с разными знаменателями.

Пример 6. Упростить: .

Решение:

Ответ: .

Пример 7. Упростить: .

Решение:

.

Ответ: .

Рассмотрим теперь пример, в котором складываются не две, а три дроби (ведь правила сложения и вычитания для большего количества дробей остаются такими же).

Пример 8. Упростить: .

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй - на 4, а третьей - на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.

Смешанные дроби также, как и простые дроби можно вычитать. Чтобы отнять смешанные числа дробей нужно знать несколько правил вычитания. Изучим эти правила на примерах.

Вычитание смешанных дробей с одинаковыми знаменателями.

Рассмотрим пример с условием, что уменьшаемое целое и дробная часть больше соответственно вычитаемого целой и дробной части. При таких условиях вычитание происходит отдельно. Целую часть вычитаем из целой части, а дробную часть из дробной .

Рассмотрим пример:

Выполните вычитание смешанных дробей \(5\frac{3}{7}\) и \(1\frac{1}{7}\).

\(5\frac{3}{7}-1\frac{1}{7} = (5-1) + (\frac{3}{7}-\frac{1}{7}) = 4\frac{2}{7}\)

Правильность вычитания проверяется сложением. Сделаем проверку вычитания:

\(4\frac{2}{7}+1\frac{1}{7} = (4 + 1) + (\frac{2}{7} + \frac{1}{7}) = 5\frac{3}{7}\)

Рассмотрим пример с условием, когда дробная часть уменьшаемого меньше соответственно дробной части вычитаемого. В таком случае мы занимаем единицу у целого в уменьшаемом.

Рассмотрим пример:

Выполните вычитание смешанных дробей \(6\frac{1}{4}\) и \(3\frac{3}{4}\).

У уменьшаемого \(6\frac{1}{4}\) дробная часть меньше чем у дробной части вычитаемого \(3\frac{3}{4}\). То есть \(\frac{1}{4} < \frac{1}{3}\), поэтому сразу отнять мы не сможем. Займем у целой части у 6 единицу, а потом выполним вычитание. Единицу мы запишем как \(\frac{4}{4} = 1\)

\(\begin{align}&6\frac{1}{4}-3\frac{3}{4} = (6 + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {1} + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {\frac{4}{4}} + \frac{1}{4})-3\frac{3}{4} = (5 + \frac{5}{4})-3\frac{3}{4} = \\\\ &= 5\frac{5}{4}-3\frac{3}{4} = 2\frac{2}{4} = 2\frac{1}{4}\\\\ \end{align}\)

Следующий пример:

\(7\frac{8}{19}-3 = 4\frac{8}{19}\)

Вычитание смешанного дроби из целого числа.

Пример: \(3-1\frac{2}{5}\)

Уменьшаемое 3 не имеет дробной части, поэтому сразу отнять мы не сможем. Займем у целой части у 3 единицу, а потом выполним вычитание. Единицу мы запишем как \(3 = 2 + 1 = 2 + \frac{5}{5} = 2\frac{5}{5}\)

\(3-1\frac{2}{5}= (2 + \color{red} {1})-1\frac{2}{5} = (2 + \color{red} {\frac{5}{5}})-1\frac{2}{5} = 2\frac{5}{5}-1\frac{2}{5} = 1\frac{3}{5}\)

Вычитание смешанных дробей с разными знаменателями.

Рассмотрим пример с условием, если дробные части уменьшаемого и вычитаемого с разными знаменателями. Нужно привести к общему знаменателю, а потом выполнить вычитание .

Выполните вычитание двух смешанных дробей с разными знаменателями \(2\frac{2}{3}\) и \(1\frac{1}{4}\).

Общим знаменателем будет число 12.

\(2\frac{2}{3}-1\frac{1}{4} = 2\frac{2 \times \color{red} {4}}{3 \times \color{red} {4}}-1\frac{1 \times \color{red} {3}}{4 \times \color{red} {3}} = 2\frac{8}{12}-1\frac{3}{12} = 1\frac{5}{12}\)

Вопросы по теме:
Как вычитать смешанные дроби? Как решать смешанные дроби?
Ответ: нужно определиться к какому типу относиться выражение и по типу выражения применять алгоритм решения. Из целой части вычитаем целое, у дробной части вычитаем дробную часть.

Как из целого числа вычесть дробь? Как от целого числа отнять дробь?
Ответ: у целого числа нужно занять единицу и записать эту единицу в виде дроби

\(4 = 3 + 1 = 3 + \frac{7}{7} = 3\frac{7}{7}\),

а потом целое отнять от целого, дробную часть отнять от дробной части. Пример:

\(4-2\frac{3}{7} = (3 + \color{red} {1})-2\frac{3}{7} = (3 + \color{red} {\frac{7}{7}})-2\frac{3}{7} = 3\frac{7}{7}-2\frac{3}{7} = 1\frac{4}{7}\)

Пример №1:
Выполните вычитание правильной дроби из единицы: а) \(1-\frac{8}{33}\) б) \(1-\frac{6}{7}\)

Решение:
а) Представим единицу как дробь со знаменателем 33. Получим \(1 = \frac{33}{33}\)

\(1-\frac{8}{33} = \frac{33}{33}-\frac{8}{33} = \frac{25}{33}\)

б) Представим единицу как дробь со знаменателем 7. Получим \(1 = \frac{7}{7}\)

\(1-\frac{6}{7} = \frac{7}{7}-\frac{6}{7} = \frac{7-6}{7} = \frac{1}{7}\)

Пример №2:
Выполните вычитание смешанной дроби из целого числа: а) \(21-10\frac{4}{5}\) б) \(2-1\frac{1}{3}\)

Решение:
а) Займем у целого числа 21 единицу и распишем так \(21 = 20 + 1 = 20 + \frac{5}{5} = 20\frac{5}{5}\)

\(21-10\frac{4}{5} = (20 + 1)-10\frac{4}{5} = (20 + \frac{5}{5})-10\frac{4}{5} = 20\frac{5}{5}-10\frac{4}{5} = 10\frac{1}{5}\\\\\)

б) Займем у целого числа 2 единицу и распишем так \(2 = 1 + 1 = 1 + \frac{3}{3} = 1\frac{3}{3}\)

\(2-1\frac{1}{3} = (1 + 1)-1\frac{1}{3} = (1 + \frac{3}{3})-1\frac{1}{3} = 1\frac{3}{3}-1\frac{1}{3} = \frac{2}{3}\\\\\)

Пример №3:
Выполните вычитание целого числа из смешанной дроби: а) \(15\frac{6}{17}-4\) б) \(23\frac{1}{2}-12\)

а) \(15\frac{6}{17}-4 = 11\frac{6}{17}\)

б) \(23\frac{1}{2}-12 = 11\frac{1}{2}\)

Пример № 4:
Выполните вычитание правильной дроби из смешанной дроби: а) \(1\frac{4}{5}-\frac{4}{5}\)

\(1\frac{4}{5}-\frac{4}{5} = 1\\\\\)

Пример №5:
Вычислите \(5\frac{5}{16}-3\frac{3}{8}\)

\(\begin{align}&5\frac{5}{16}-3\frac{3}{8} = 5\frac{5}{16}-3\frac{3 \times \color{red} {2}}{8 \times \color{red} {2}} = 5\frac{5}{16}-3\frac{6}{16} = (5 + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {1} + \frac{5}{16})-3\frac{6}{16} = \\\\ &= (4 + \color{red} {\frac{16}{16}} + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {\frac{21}{16}})-3\frac{3}{8} = 4\frac{21}{16}-3\frac{6}{16} = 1\frac{15}{16}\\\\ \end{align}\)

Похожие публикации