Интернет-журнал дачника. Сад и огород своими руками

Загрязнение атмосферы способы защиты воздуха. Загрязнение атмосферы. Средства защиты атмосферы. Способы очистки от газо- и парообразных примесей


1
Содержание

I. Строение и состав атмосферы
II. Загрязнение атмосферы:

    Качество атмосферы и особенности ее загрязнения;
    Основные химические примеси, загрязняющие атмосферу.
III. Методы и средства защиты атмосферы:
    Основные методы защиты атмосферы от химических примесей;
    Классификация систем очистки воздуха и их параметры.
IV. Список литературы

I. Строение и состав атмосферы

Атмосфера – это газообразная оболочка Земли, состоящая из смеси различных газов и простирающаяся на высоту более 100 км. Она имеет слоистое строение, которое включает ряд сфер и расположенные между ними паузы. Масса атмосферы составляет 5,91015 т, объем 13,2-1020 м 3 . Атмосфера играет огромную роль во всех природных процессах и, в первую очередь, регулирует тепловой режим и общие климатические условия, а также защищает человечество от вредного космического излучения.
Основными газовыми компонентами атмосферы являются азот (78%), кислород (21%), аргон (0,9%) и углекислый газ (0,03%). Газовый состав атмосферы меняется с высотой. В приземном слое из-за антропогенных воздействий количество углекислого газа возрастает, а кислорода снижается. В отдельных регионах в результате хозяйственной деятельности в атмосфере увеличивается количество метана, оксидов азота и других газов, вызывающих такие неблагоприятные явления, как парниковый эффект, разрушение озонового слоя, кислотные дожди, смог.
Циркуляция атмосферы влияет на режим рек, почвенно-растительный покров, а также экзогенные процессы рельефообразования. И, наконец, воздух необходимое условие жизни на Земле.
Наиболее плотный слой воздуха, прилегающий к земной поверхности, носит название тропосферы. Толщина ее составляет: на средних широтах 10-12 км, над уровнем моря и на полюсах 1-10 км, а на экваторе 16-18 км.
Из-за неравномерности нагрева солнечной энергией в атмосфере образуются мощные вертикальные потоки воздуха, а в приземном слое отмечается неустойчивость его температуры, относительной влажности, давления и т.п. Но при этом температура в тропосфере по высоте является стабильной и уменьшается на 0,6°С на каждые 100 м в диапазоне от +40 до -50°С. В тропосфере содержится до 80% всей влаги, имеющейся в атмосфере, в ней образуются облака и формируются все виды осадков, которые по своей сути являются очистителями воздуха от примесей.
Выше тропосферы расположена стратосфера, а между ними находится тропопауза. Толщина стратосферы составляет около 40 км, воздух в ней заряжен, влажность его невысока, при этом температура воздуха от границы тропосферы до высоты 30 км над уровнем моря постоянна (около -50°С), а затем она постепенно повышается до +10°С на высоте 50 км. Под воздействием космического излучения и коротковолновой части ультрафиолетового излучения Солнца молекулы газов в стратосфере ионизируются, в результате образуется озон. Озоновый слой, располагаемый до 40 км, играет очень большую роль, оберегая все живое на Земле от ультрафиолетовых лучей.
Стратопауза отделяет стратосферу от лежащей выше мезосферы, в которой количество озона уменьшается, а температура на высоте примерно 80 км над уровнем моря составляет -70°С. Резкий перепад температур между стратосферой и мезосферой объясняется наличием озонового слоя.

II. Загрязнение атмосферы

1) Качество атмосферы и особенности ее загрязнения

Под качеством атмосферы понимают совокупность ее свойств, определяющих степень воздействия физических, химических и биологических факторов на людей, растительный и животный мир, а также на материалы, конструкции и окружающую среду в целом. Качество атмосферы зависит от ее загрязненности, причем сами загрязнения могут попадать в нее от природных и антропогенных источников. С развитием цивилизации в загрязнении атмосферы все больше и больше превалируют антропогенные источники.
В зависимости от формы материи загрязнения подразделяют на вещественные (ингредиентные), энергетические (параметрические) и вещественно-энергетические. К первым относят механические, химические и биологические загрязнения, которые обычно объединяют общим понятием «примеси», ко вторым - тепловые, акустические, электромагнитные и ионизирующие излучения, а также излучения оптического диапазона; к третьим - радионуклиды.
В глобальном масштабе наибольшую опасность представляет загрязнение атмосферы примесями, так как воздух выступает посредником загрязнения всех других объектов природы, способствуя распространению больших масс загрязнения на значительные расстояния. Промышленными выбросами, переносимыми по воздуху, загрязняется Мировой океан, закисляются почва и вода, изменяется климат и разрушается озоновый слой.
Под загрязнением атмосферы понимают привнесение в нее примесей, которые не содержатся в природном воздухе или изменяют соотношение между ингредиентами природного состава воздуха.
Численность населения Земли и темпы его роста являются предопределяющими факторами повышения интенсивности загрязнения всех геосфер Земли, в том числе и атмосферы, так как с их увеличением возрастают объемы и темпы всего того, что добывается, производится, потребляется и отправляется в отходы. Наибольшее загрязнение атмосферы наблюдается в городах, где обычные загрязнители - это пыль, сернистый газ, оксид углерода, диоксид азота, сероводород и др. В некоторых городах в связи с особенностями промышленного производства в воздухе содержатся специфические вредные вещества, такие, как серная и соляная кислота, стирол, бенз(а)пирен, сажа, марганец, хром, свинец, метилметакрилат. Всего в городах насчитывается несколько сотен различных загрязнителей воздуха.
Особую тревогу вызывают загрязнения атмосферы вновь создаваемыми веществами и соединениями. ВОЗ отмечает, что из 105 известных элементов таблицы Менделеева 90 используются в производственной практике, а на их базе получено свыше 500 новых химических соединений, почти 10% из которых вредные или особо вредные.
2) Основные химические примеси,
загрязняющие атмосферу

Различают естественные примеси, т.е. обусловленные природными процессами, и антропогенные, т.е. возникающие в результате хозяйственной деятельности человечества (рис. 1). Уровень загрязнения атмосферы примесями от естественных источников является фоновым и имеет малые отклонения от среднего уровня во времени.

Рис. 1. Схема процессов выбросов веществ в атмосферу и трансформации
исходных веществ в продукты с последующим выпадением в виде осадков

Антропогенные загрязнения отличаются многообразием видов примесей и многочисленностью источников их выброса. Наиболее устойчивые зоны с повышенными концентрациями загрязнений возникают в местах активной жизнедеятельности человека. Установлено, что каждые 10-12 лет объем мирового промышленного производства удваивается, а это сопровождается примерно таким же ростом объема выбрасываемых загрязнений в окружающую среду. По ряду загрязнений темпы роста их выбросов значительно выше средних. К таковым относятся аэрозоли тяжелых и редких металлов, синтетические соединения, не существующие и не образующиеся в природе, радиоактивные, бактериологические и другие загрязнения.
Примеси поступают в атмосферу в виде газов, паров, жидких и твердых частиц. Газы и пары образуют с воздухом смеси, а жидкие и твердые частицы - аэрозоли (дисперсные системы), которые подразделяют на пыль (размеры частиц более 1 мкм), дым (размеры твердых частиц менее 1 мкм) и туман (размер жидких частиц менее 10 мкм). Пыль, в свою очередь, может быть крупнодисперсной (размер частиц более 50 мкм), среднедисперсной (50-10 мкм) и мелкодисперсной (менее 10 мкм). В зависимости от размера жидкие частицы подразделяются на супертонкий туман (до 0,5 мкм), тонкодисперсный туман (0,5-3,0 мкм), грубодисперсный туман (3-10 мкм) и брызги (свыше 10 мкм). Аэрозоли чаще полидисперсные, т.е. содержат частицы различного размера.
Основными химическими примесями, загрязняющими атмосферу, являются следующие: оксид углерода (СО), диоксид углерода (СО 2), диоксид серы (SO 2), оксиды азота, озон, углеводороды, соединения свинца, фреоны, промышленные пыли.
Основными источниками антропогенных аэрозольных загрязнений воздуха являются теплоэлектростанции (ТЭС), потребляющие уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и другие заводы. Аэрозольные частицы от этих источников отличаются большим химическим разнообразием. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях.
К постоянным источникам аэрозольного загрязнения относятся промышленные отвалы искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образующихся при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью.
Сжигание каменного угля, производство цемента и выплавка чугуна дают суммарный выброс пыли в атмосферу, равный 170 млн т/г.
Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. К опасным факторам антропогенного характера, способствующим серьезному ухудшению качества атмосферы, следует отнести ее загрязнение радиоактивной пылью. Время пребывания мелких частиц в нижнем слое тропосферы составляет в среднем несколько суток, а в верхнем 20-40 суток. Что касается частиц, попавших в стратосферу, то они могут находиться в ней до года, а иногда и больше.

III. Методы и средства защиты атмосферы

1) Основные методы защиты атмосферы
от химических примесей

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.
В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.
Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:

    замену менее экологичных видов топлива экологичными;
    сжигание топлива по специальной технологии;
    создание замкнутых производственных циклов.
В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных топлив такие показатели, как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, поэтому введен суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на человека.
Сжигание топлива по особой технологии (рис. 2) осуществляется либо в кипящем (псевдоожиженном) слое, либо предварительной их газификацией.

Рис. 2. Схема тепловой электростанции с использованием дожигания
топочных газов и впрыскиванием сорбента: 1 - паровая турбина; 2 - горелка;
3 - бойлер; 4 - электроосадитель; 5 - генератор

Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционно-способных). Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости.
Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.
Одним из перспективных способов защиты атмосферы от химических примесей является внедрение замкнутых производственных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, т. е. превращая их в новые продукты.

2) Классификация систем очистки воздуха и их параметры

По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газопарообразные примеси. Промышленные выбросы, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной – твердые частицы или капельки жидкости.
и т.д.................

В целях защиты атмосферы от загрязнения применяют следующие экозащитные мероприятия:

– экологизация технологических процессов;

– очистка газовых выбросов от вредных примесей;

– рассеивание газовых выбросов в атмосфере;

– соблюдение нормативов допустимых выбросов вредных веществ;

– устройство санитарно-защитных зон, архитектурно-планировочные решения и др.

Экологизация технологических процессов – это в первую очередь создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ. Кроме того необходима предварительная очистка топлива или замена его более экологичными видами, применение гидрообеспыливания, рециркуляция газов, перевод различных агрегатов на электроэнергию и др.

Актуальнейшая задача современности – снижение загрязнения атмосферного воздуха отработанными газами автомобилей. В настоящее время ведется активный поиск альтернативного, более «экологически чистого» топлива, чем бензин. Продолжаются разработки двигателей автомобилей, работающих на электроэнергии, солнечной энергии, спирте, водороде и др.

Очистка газовых выбросов от вредных примесей. Нынешний уровень технологий не позволяет добиться полного предотвращения поступления вредных примесей в атмосферу с газовыми выбросами. Поэтому повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли) и токсичных газо- и парообразных примесей (NО, NО2, SO2, SO3 и др.).

Для очистки выбросов от аэрозолей применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки: сухие пылеуловители (циклоны, пылеосадительные камеры), мокрые пылеуловители (скрубберы и др.), фильтры, электрофильтры (каталитические, абсорбционные, адсорбционные) и другие методы для очистки газов от токсичных газо- и парообразных примесей.

Рассеивание газовых примесей в атмосфере – это снижение их опасных концентраций до уровня соответствующего ПДК путем рассеивания пылегазовых выбросов с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. К сожалению, этот метод позволяет снизить локальное загрязнение, но при этом проявляется региональное.

Устройство санитарно-защитных зон и архитекгурно-планировочные мероприятия.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина этих зон составляет от 50 до 1000 м в зависимости от класса производства, степени вредности и количества выделяемых в атмосферу веществ. При этом граждане, чье жилище оказалось в пределах СЗЗ, защищая свое конституционное право на благоприятную среду, могут требовать либо прекращения экологически опасной деятельности предприятия, либо переселения за счет предприятия за пределы СЗЗ.

Архитектурно-планировочные мероприятия включают правильное взаимное размещение источников выброса и населенных мест с учетом направления ветров, выбор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами и т. д.

Предыдущие материалы:

Загрязнители воздуха могут находиться в разном агрегатном состоянии – это может быть состояние пыли, тумана, газопарообразных примесей. Их можно разделить на первичные – эти загрязнители непосредственно поступают в атмосферу и вторичные , являющиеся результатом их превращений.

Замечание 1

Например, сернистый газ, поступающий в атмосферу, окисляется до серного ангидрида. Взаимодействуя с водяным паром серный ангидрид, образует капли серной кислоты, образуя кислотные дожди.

В выбросах промышленных предприятий содержатся твердые взвешенные или жидкие частицы. Они представляют собой двухфазные системы. Газы в этой системе являются сплошной фазой , а твердые или жидкие частицы относятся к дисперсной фазе . Исходя из этого, системы очистки воздуха должны быть разные.

Очистка от пыли состоит из 4-х основных групп:

  1. Сухие пылеуловителя;
  2. Мокрые пылеуловители;
  3. Электрофильтры;
  4. Фильтры.

Пылеуловители и электрофильтры используются тогда, когда содержание пыли в воздухе повышенно. Тонкая очистка воздуха при концентрации примесей меньше $100$ мг/куб. м осуществляется с помощью фильтров. Присутствующие в воздухе примеси в виде жидкостей – кислот, щелочей, масел, создающих туман, убирают с помощью туманоуловителей и используют для этого волокнистые фильтры . От выбранного метода очистки воздуха зависят средства защиты от газообразных примесей.

В связи с этим выделяют:

  1. Метод промывки вредных веществ их растворителями или метод абсорбции ;
  2. Метод адсорбции . Газообразные примеси поглощаются за счет катализаторов;
  3. Метод хемосорбции , с помощью которого происходит промывка выбросов растворами реагентов. Реагенты связывают примеси химически;
  4. Сжигание или метод термической нейтрализации;
  5. Каталитический метод.

Весь процесс по очистке воздуха можно охарактеризовать основными параметрами:

Насколько эффективна общая очистка воздуха, показывающая степень снижения вредных веществ в применяемом средстве. Эффективность характеризуется коэффициентом $h= \frac{C_{вх} – C_{вых}}{C_{вх}}.$ Cвх и Cвых, представляют концентрацию вредных веществ до и после очистки воздуха.

Оказываемое гидравлическое сопротивление . Это разность давления на входе и выходе из системы очистки $DP=\frac{xrV2}{2}$, $X$ – гидравлическое сопротивление, $r$– плотность воздуха (кг/ куб. м), $V$ – скорость воздуха (м/с). Производительность процесса показывает, какой объем воздуха проходит через систему за единицу времени (куб.м/час).

Механические системы очистки воздуха

Чтобы промышленные выбросы очистить от твердых и жидких вредных примесей используют улавливающие аппараты различных конструкций.

Принцип их работы:

Инертное осаждение . Суть его заключается в том, что направление вектора скорости движения выброса резко изменяется. Под действием инерционных сил твердые частицы будут двигаться в прежнем направлении, и попадать в приёмный бункер.

Осаждение гравитационными силами . Осаждение под их действием происходит из-за различной кривизны траектории движения газов и частиц. Вектор скорости его движения направлен горизонтально.

Осаждения центробежными силами . Суть его в том, что вредным выбросам придается вращательное движение внутри циклона и твердые частицы в результате этого центробежной силой отбрасываются к сетке. Поскольку центробежное ускорение больше ускорения силы тяжести в $1000$ раз, то удалить можно даже мелкие частицы. Циклоны, как правило, используются для сухой очистки воздуха. Частицы пыли осаждаются на стенках корпуса, а затем попадают в бункер. Через специальную выходную трубу выходит чистый воздух. Важным в этом процессе является герметичность бункера, чтобы осаждаемые частицы пыли не попали в выходную трубу. Концентрация и размер частиц пыли влияют на эффективность циклонов. Улавливающая способность циклонов в общей степени составляет $95$ %. Небольшие размеры, отсутствие движущихся деталей, простота конструкции являются основными преимуществами циклонов. К недостаткам относятся затраты энергии на вращение и значительный абразивный износ его частей.

Механическая фильтрация выброса через пористую перегородку. В процессе такой фильтрации задерживаются аэрозольные частицы, и полностью проходит газовая составляющая.

К механической системе очистки воздуха относятся мокрые пылеуловители . Это скрубберы , особенностью которых является эффективность очистки от мелкодисперсной пыли. Данные системы очищают от пыли горячие и взрывоопасные газы. Принцип их работы заключается в осаждении частиц пыли под действием сил инерции на поверхность жидких капель. В качестве такого химического орошающего агента может быть известковое молоко, которое подаётся в скруббер. В этом случае будет происходить химическая очистка газов. Сухие пылеуловители очистку от пыли движущегося воздуха производят механически под действием сил гравитации и инерции и называются инерционными . Если направление движения воздуха будет резко изменено, то частицы пыли по инерции сохранят направление своего движения, ударятся о поверхность, потеряют свою энергию и, под действием сил гравитации, осядут в специальном бункере.

Один из эффективных способов очистки газов от пыли является электрический способ , который осуществляется с помощью электрофильтров. В неоднородном электрическом поле, создаваемом между коронирующим и осадительным электродами, действует ударная ионизация газа. Попавшие между электродами загрязненные газы, вследствие частичной ионизации, проводят электрический ток. Частицы с отрицательным зарядом направляются к осадительному электроду, с положительным зарядом оседают на коронируюшем электроде. Если учесть, что частицы пыли получают в основном отрицательный заряд, то её основная масса будет находиться на положительном осадительном электроде. Удалить её с этого электрода не является большой сложностью. С помощью электрофильтров очистка газов доходит до $97$ %. В этом процессе тоже есть свои преимущества – удаляются мелкие частицы от $0,2$ мкм и свои недостатки – большой расход энергии, необходимость следить за чистотой электродов, высокие требования к технике безопасности.

Тонкую очистку выбросов производят с помощью фильтров, которые имеют пористую перегородку. В процессе фильтрования воздуха перегородка задерживает твердые частицы. Чаще всего промышленность использует тканевые рукавные фильтры, в корпусе которых устанавливается нужное число рукавов. Загрязненный воздух подается на рукава, а очищенный воздух выходит через патрубок. Поскольку рукава содержат загрязненные частицы и насыщены ими, то их обычно продувают и встряхивают для удаления осажденной пыли.

Физико-химические методы очистки загрязненного воздуха

Среди физико-химических методов очистки воздуха надо назвать метод абсорбции . Суть его заключается в разделении на составные части газовоздушной смеси. Происходит это разделение при поглощении газовых компонентов абсорбентом , который и является поглотителем . Абсорбент имеет определенный состав и выбирается исходя из того, как в нем растворяется поглощаемый газ.

Замечание 2

Например, чтобы удалить из выбросов аммиак, хлористый водород, в качестве поглотительной жидкости применяют воду . Серная кислота используется для улавливания водяного пара, а вязкими маслами удаляют ароматические углеводороды.

Чаще всего в абсорберы подается жидкий реагент вместо воды. От скрубберов абсорберы отличаются тем, что имеют насадку, которая увеличивает площадь поверхности контакта газа и жидкости. Происходит механическая и, в основном, химическая очистка газов от целого ряда вредных выбросов, среди которых оксиды азота, сера, уголь, сероуглерод, меркаптан. Высокая скорость абсорбции достигается при высоком давлении и низкой температуре.

Метод адсорбции , среди всех методов защиты воздушного бассейна он относится к одному из самых распространенны х. В основе метода лежат физические свойства ряда пористых материалов, способных извлекать отдельные компоненты из газовоздушной смеси. Основным адсорбентом в промышленности является активированный уголь . С помощью адсорбции проводится очистка вредных выбросов при высоких температурах. Используют активированный уголь для очистки газов от рекуперации растворителей, дурно пахнущих веществ и др. С точки зрения конструкции адсорберы представляют собой заполненные адсорбентом вертикальные или горизонтальные ёмкости и через них проходит поток очищаемых газов.

Хемосорбция как метод очистки основана на поглощении паров и газов. Поглощение осуществляется жидкими или твердыми поглотителями с образованием химических соединений. Применяемые для этого метода установки напоминают абсорберы.

Каталитический метод использует специальное вещество – катализатор , при взаимодействии с которым токсичные компоненты газовоздушной смеси становятся безвредными веществами. Катализаторами могут быть металлы и их соединения, например, платина, оксиды меди, марганца. Катализаторы ускоряют химический процесс и могут быть в виде шаров, колец, спиральной проволоки.

Чтобы очистить газ от вредных веществ используют термический метод , который требует поддержания высоких температур и наличия кислорода. С помощью термических катализаторов сжигаются углеводороды, оксид углерода, выбросы, сделанные с лакокрасочного производства.

Классическим примером очистки газов этим способом являются факелы на нефтеперерабатывающих заводах. Отработавшие газы предприятия, имеющие разное содержание горючих веществ, собирают в одну магистраль и на высоте около $100$ м сжигаются. Сжигание этих газов обязательно, потому что они ядовиты и взрывоопасны. В результате сжигания вредных примесей происходит полная очистка газов с выделением оксида углерода и пара, но при этом расходуется много топлива.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Защита атмосферы Для атмосферы характерна чрезвычайно высокая динами чность, обусловленная как бы стрым перемещением воздушных масс в латера льном и вертикальном направлениях, так и вы сокими скоростями, разнообр азием протекающих в ней физико-химических реакций. Атмо сфера рассматри вается как огромный «химический котел», который находится под воздейст вием многочисленных и изменчивых антропогенных и природных факторов. Г азы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реак ционной способностью. Пыль и сажа, возникающие при сгорании топлива, лес ных пожарах, сорбируют тяжелые ме таллы и радионуклиды и при осаждении н а поверхность могут загрязнить обширные террито рии, проникнуть в орган изм человека через органы дыхания. Загрязнением атмосферы считается прямое или косвенное введени е в нее любого вещества в таком количестве, которое воздействует на каче ство и состав наружного воздуха, нанося вред людям, живой и неживой приро де, экосистемам, строительным материалам, природным ресурсам – всей окр ужающей среде. Очистка воздуха от при месей. Для защиты атмосферы о т негативного антропогенного воздействия используют следующие меры: - экологизацию технологических процессов; - очистку газовых выбросов от вредных примесей; - рассеивание газовых выбросов в атмосфере; - устройство санитарно-защитных зон, архитектурно-планировочные решени я. Безотходная и малоотх одная технология Экологизация тех проц ессов – это создание замкнутых технологических циклов, безотходных и м алоотходных технологий, исключающих попадание в атмосферу вредных заг рязняющих веществ. Наиболее надежным и самым экономичным способом охраны биосферы от вред ных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые пр едложен академиком Н.Н. Семеновым. Под ним подразумевается создание опти мальных технологических систем с замкнутыми материальными и энергети ческими потоками. Такое производство не должно иметь сточных вод, вредн ых выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функциониро вания производств, при рациональном использовании всех компонентов сы рья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потреблен ие – вторичные сырьевые ресурсы). Конечно же, понятие «безотходное производство» имеет несколько условн ый характер; это идеальная модель производства, так как в реальных услов иях нельзя полностью ликвидировать отходы и избавиться от влияния прои зводства на окружающую среду. Точнее следует называть такие системы мал оотходными, дающими минимальные выбросы, при которых ущерб природным эк осистемам будет минимален. Малоотходная технология является промежуто чной ступенью при создании безо тходного про изводства. В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных техноло гий: 1) разработка и внедрение п ринципиально новых технологических процессов и систем, работающих по з амкнутому циклу, позволяющих исключить образование основного количест ва отходов; 2) переработка отходов производства и потребления в качес тве вторичного сырья; 3) создание территориально-промышленных комплексов с замк нутой структурой материальных потоков сырья и отходов внутри комплекс а. Важность экономного и рационального использования природных р есурсов не требует обоснований. В мире непрерывно растет потребность в с ырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациона льное использования вторичных ресурсов требует принятия межотраслевы х решений. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образов ание основного количества отходов, является основным направлением тех нического прогресса. Очистка газовых выбро сов от вредных примесей Газовые выбросы класс ифицируются по организации отвода и контроля – на организованные и нео рганизованные, по температуре на нагретые и холодные. Организованный выброс – это выброс, поступающий в атмосф еру через специально сооруженные газоходы, воздуховоды, трубы. Неорганизованные называют промышленные выбросы, поступающие в атмосфе ру в виде ненаправленных потоков газа в результате нарушения герметичн ости оборудования. Отсутствие или неудовлетворительной работы оборудо вания по отсосу газа в местах загрузки, выгрузки и хранения продукта. Для снижения загрязнения атмосферы от промышленных выбросов использую т системы очистки газов. Под очисткой газов понимают отделение от газа и ли превращение в безвредное состояние загрязняющего вещества, поступа ющего от промышленного источника. Средства защиты атмосферы должны ограничивать налич ие вредных веществ в воздухе среды обитания человека на уровне не выше П ДК. Во всех случаях должно соблюдаться усло вие: С+Сф 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%. Диаметр частиц, ул авливаемых циклоном на 50%, можно опреде лить по эмпирической формуле Гидравлическое сопротивление высокопроизводительных циклонов соста вляет около 1080 Па. Ци клоны широко применяют при грубой и средней очистке газа от аэрозолей. Другим типом центробежного пылеуловителя служит ротоклон, состоящий и з ротора и вентилятора, помещенного в осадительный кожух. Лопасти вентил ятора, вращаясь, направляют пыль в канал, который ведет в приемник пыли. Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежнос ть работы при температуре газов до 500 0 С, улавл ивание пыли в сухом виде, почти постоянное гидравлическое сопротивлени е аппарата, простота изготовления, высокая степень очистки. Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавлив ание частиц размером меньше 5мкм. Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фи льтрующие материалы. Фильтрующие перегородки состоят из волокнистых и ли зернистых элементов и условно подразделяются на следующие типы. Гибкие пористые перегородки – тканевые материалы из природных, синтет ических или минеральных волокон, нетканные волокнистые материалы (войл оки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мемб ранные фильтры). Фильтрация - весьма распространенный прием тонкой очистки газов. Ее п реимущества - сравн ительная низкая стоимость оборудования (за исключением металлокерамич еских фильтров) и высокая эффективность тонкой очистки. Недостатки филь трации высокое гидравлическое сопротивление и быстрое забивание фильт рующего материала пылью. Очистка выбросов газообразных веществ промышленных пред приятий В настоящее время, когд а безотходная технология находится в периоде становления и полностью б езотходных предприятий еще нет, основной задачей газоочистки служит до ведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами. Промышленные способы очистки газовых выбросов от газо- и парообразных т оксичных примесей можно разделить на пять основных групп: 1 Метод абсорбции – заключается в поглощении отде льных компонентов газообразной смеси абсорбентом (поглотителем) в каче стве которого выступает жидкость. Абсорбенты, применяемые в промышленности, оце ниваются по следующим показателям: 1) абсорбционная ем кость, т. е. растворимость извлекаемого компонента в поглотителе в завис имости от температуры и давления; 2) селективность, ха рактеризуемая соотношением растворимостей разделяемых газов и скорос тей их абсорбции; 3) минимальное давл ение паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие корро зирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелоч ей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, окс идов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента исполь зуют воду, для улавливания водяных паров – серную кислоту, для улавлива ния ароматических углеводородов – масла. Абсорбционная очистка - непрерывный и, как правило, ц иклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цик ла очистки. При физической абсорбции регенерацию абсорбента проводят н агреванием и снижением давления, в результате чего происходит десорбци я поглощенной газовой примеси и ее концентрированно. Для реализа ции процесса очистки применяют абсорберы различных конструкций (плено чные, насадочные, трубчатые и др.). Наиболее распространен насадочный скр уббер, применяемый для очистки газов от диоксида серы, сероводорода, хло роводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивно го гидродинамического режима этих реакторов, работающих при скорости г аза 0,02-0,7 м/с. Объемы ап паратов поэтому велики и установки громоздки. Абсорбционные методы характеризуются непрерывностью и универсальн остью процесса, экономичностью и возможностью извлечения больших коли честв примесей из газов. Недостаток этого метода в том, что насадочные ск рубберы, барботажные и даже пенные аппараты обеспечивают достаточно вы сокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технол огические схемы мокрой очистки, как правило, сложны, многоступенчаты и о чистные реакторы (особенно скрубберы) име ют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличн ости и безотходности. Но и циклические системы мокрой очистки конкур ентоспособны только тогда, когда они совмещены с пылеочисткой и охлажде нием газа. 2. Метод хемосорбции – основан на поглощении газов и паров твердыми и жид кими поглотителями, в результате чего образуются мало летучие и малорас творимые соединения. Большинство хемосорбционных процессов газоочист ки обратимы, т. е. при повышении температуры поглотительного раствора хи мические соединения, образовавшиеся при хемосорбции, разлагаются с рег енерацией активных компонентов поглотительного раствора и с десорбцие й поглощенной из газа примеси. Этот прием положен в основу регенерации х емосорбентов в циклических системах газоочистки. Хемосорбция в особен ности применима для тонкой очистки газов при сравнительно небольшой на чальной концентрации примесей. 3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высоко пористых материалов, обладающих развитой удельной поверхностью. Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделени ем фракций, осушка газов и для санитарной очистки газовых выхлопов. В пос леднее время адсорбционные методы выходят на первый план как надежное с редство защиты атмосферы от токсичных газообразных веществ, обеспечив ающее возможность концентрирования и утилизации этих веществ. Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уго ль, силикагель, алюмогель, природные и синтетические цеолиты (молекулярн ые сита). Основные требования к промышленным сорбентам - высокая поглотительная сп особность, избирательность действия (селективность), термическая устой чивость, длительная служба без изменения структуры и свойств поверхнос ти, возможность легкой регенерации. Чаще всего для санитарной очистки га зов применяют активный уголь благодаря его высокой поглотительной спо собности и легкости регенерации. Известны различные конструкции адсорбентов (вертикальн ые, используемые при малых расходах, горизонтальные, при больших расхода х, кольцевые). Очистку газа осуществляют через неподвижные слои адсорбен та и движущиеся слои. Очищаемый газ проходит адсорбер со скоростью 0,05-0,3 м/с. После очистки ад сорбер переключается на регенерацию. Адсорбционная установка, состоящ ая из нескольких реакторов, работает в целом непрерывно, так как одновре менно одни реакторы находятся на стадии очистки, а другие - на стадиях регенерации, ох лаждения и др. Реген ерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азо та). Иногда адсорбент, потерявший активность (экранированный пылью, смол ой), полностью заменяют. Наиболее перспективны непрерывные циклические процессы адсорбцион ной очистки газов в реакторах с движущимся или взвешенным слоем адсорбе нта, которые характеризуются высокими скоростями газового потока (на по рядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная ле гкость регенерации этих примесей с превращением их в товарный продукт и ли возвратом в производство; таким образом осуществляется принцип безо тходной технологии. Адсорбционный метод особенно рационален для удале ния токсических примесей (органических соединений, паров ртути и др.), сод ержащихся в малых концентрациях, т. е. как завершающий этап санитарной оч истки отходящих газов. Недостатки большинства адсорбционных установок - периодичность 4. Метод каталитического окисления – основан на удалении примес ей из очищаемого газа в присутствии катализаторов. Действие катализаторов проявляется в промежуточном химическом взаимодействии катализатора с реагирующими веществами, в р езультате чего образуется промежуточные соединения. В качестве катализаторов применяют металлы и их соединения (оксиды меди, марганца и др.) Катализаторы имеют вид шаров, к олец или другую форму. Особенно широко этот метод используется для очист ки выхлопных газов ДВС. В результате каталитических реакций примеси, находящиес я в газе, превращаются в другие соединения, т. е. в отличие от рассмотренны х методов примеси не извлекаются из газа, а трансформируются в безвред ные соединения, присутстви е которых допустимо в выхлопном газе, либо в соединения, ле гко удаляемые из газового потока. Если образовавшиеся вещества подлежа т удалению, то тре буются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоки х температурах и обычном давлении, а также при весьма малых начальных ко нцентрациях примесей. Каталитические методы позволяют утилизировать р еакционную теплоту, т.е. создавать энерготехнологические системы. Устан овки каталитической очистки просты в эксплуатации и ма логабаритны. Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбц ия), что усложняет установку и снижает общий экономический эффект. 5.Термический метод заключается в очистке газов перед выбросом в атмосферу путем высокотемпературного дожигания. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителе й или оксида углерода. Простейший метод - факельное сжигание - возможен, когда концентра ция горючих загрязнителей близка к нижнему пределу воспламенения. В это м случае примеси служат топливом, температура процесса 750- 900 °С и теплоту горения прим есей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламене ния, то необходимо подводить некоторое количество теплоты извне. Чаще вс его теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточ но высоком содержании горючих примесей, иначе возрастает расход добавл яемого горючего газа. Рассеивание пылегазовых выбросов в атмосферу. При любом способе очис тке, часть пыли и газов остается в воздухе, выбрасываемом в атмосферу. Рас сеивание газовых выбросов используют для снижения опасных концентраци й примесей до уровня соответствующего ПДК. Используют различные технол огические средства для осуществления процесса рассеивания: трубы, вент иляционные устройства. На процессы рассеивания выбросов существенное влияние оказывает состо яние атмосферы, расположение предприятий и источников выбросов, характ ер местности и т. д. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное – распределением температур в вертикальном направлении. При распределении концентрации вредных веществ в атмосфере над факело м организованного высокого источника выброса выделяют 3 зоны загрязнен ия атмосферы: Рис. 1. Переброс факела выбросов, характеризующийся относительно невысоким с одержанием вредных веществ в приземном слое атмосферы. 2. Зона задымления с максимальным содержанием вредных веществ и постепен ное снижение уровня загрязнения. Эта зона является наиболее опасной для населения. Размеры этой зоны в зависимости от метеорологических услови й находятся в пределах 10-49 высоты трубы. 3. Зона постепенного сниж ения уровня загрязнения. При невозможности достигнуть ПДК очисткой иногда при меняют многократное разбавление токсичных веществ или выброс газов че рез высокие дымовые трубы для рассеивания примесей в верхних слоях атмо сферы. Теоретическое определение концентрации примесей в нижних слоях атмосферы в зависимости от высоты трубы и других факторов связано с зако нами турбулентной диффузии в атмосфере и пока разработано не полностью. Высоту трубы, необходимую, чтобы обеспечить ПДК токсичных веществ в нижн их слоях атмосферы, на уровне дыхания, определяют по приближенным формул ам, например: ПДВ = где ПДВ - предельно допустимый выброс вредных примесей в атмосферу, обеспечивающий концен трацию этих веществ в приземном слое воздуха не выше ПДК, г/с; Н - высота трубы, м; V - объем газового выброса, м^с; ∆ t - разность между температурами газового выброса и окружаю щего воздуха, °С; А - коэффициент, определяющий условия вертикального и горизонтального рас сеив ания вредных веществ в воздухе; F - безразмерный к оэффициент, учи тывающий скорость седиментации вредных веществ в атмос фере; т - коэффициент, учитывающий условия выхода газа из устья тр убы, его определяют графически или приближенно по формуле: Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом, т ак как не предохраняет атмосферу, а лишь переносит загрязнения из одного района в другие. Устройство санитарно-защитных зон Санитарно-з ащитная зона - это полоса, отделяющая источники промышленного загрязнен ия от жилых или общественных зданий для защиты населения от влияния вред ных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от класса пр оизводства, степени вредности и количества, выделенных в атмосферу веще ств, и принимают равной от 50 до 1000 м. Санитарно-защитная зона должна быть благоустроена и озеленена. Различают 3 типа зон: Круговые, при полном окружении предприятия жилой застройкой; Секторные, при частичном окружении предприятия жилой застройкой и прим ыкания завода к естественной природной преграде. Трапециидальные, при отрыве предприятия от селитебной зоны. Устройство са н-защитных зон – вспомогательное средство защиты, так как очень дорогос тоящее мероприятие, это увеличение протяженности дорог, коммуникаций и т.д. Архитектур но-планировочные мероприятия включают правильное взаимное размещение источников выброса в населенных пунктах с учетом направления ветра, выб ор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход на селенных пунктов и др.

6.5. СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ.

Воздух производственных помещений загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух

загрязняется технологическими выбросами цехов, таких как кузнечно-прессовые цеха, цеха термической и механической обработки металлов, литейные цеха и другие, на базе которых развивается современное машиностроение. В процессе производства машин и оборудования широко используют сварочные работы, механическую обработку металлов, переработку неметаллических материалов, лакокрасочные операции и т.д. Поэтому атмосфера нуждается в защите.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Это достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

вывод токсичных веществ из помещения общеобменной вентиляцией;


вентиляцией, очистка загрязненного воздуха в специальных аппаратах и
его возврат в производственное или бытовое помещение, если воздух
после очистки в аппарате соответствует нормативным требованиям к
приточному воздуху,

локализация токсичных веществ в зоне их образования местной
вентиляцией, очистка загрязненного воздуха в специальных аппаратах,
выброс и рассеивание в атмосфере,

очистка технологических газовых выбросов в специальных аппаратах,
выброс и рассеивание в атмосфере; в ряде случаев перед выбросом
отходящие газы разбавляют атмосферным воздухом.

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно-допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.02 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создают приземную концентрацию, превышающую ПДК.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

пылеуловители (сухие, электрические фильтры, мокрые фильтры);

туманоуловители (низкоскоростные и высокоскоростные);

аппараты для улавливания паров и газов (абсорбционные,
хемосорбционные, адсорбционные и нейтрализаторы);

аппараты многоступенчатой очистки (уловители пыли и газов,
уловители туманов и твердых примесей, многоступенчатые
пылеуловители).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных коронирующих электродах. Для этого применяются электрофильтры.


Схема электрофильтра.

1-коронирующий электрод

2-осадительный электрод

Аэрозольные частицы, поступающие в зону между коронирующим 1 и осадительным 2 электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получает тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунд. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полосы. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки

фильтра и перепад давления на фильтроэлементе. Осождение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной и переливной решетками.


Схема барботажно-пенные пылеуловители с провальной(а) и (б)

переливной решетками.

3-решетка

В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождает возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли -0,95...0,96 при удельном расходе воды 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители. Принцип их действия основан на осаждении капель на поверхности пор с последующим стеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации W. Туманоуловители делят на низкоскоростные (W< 0,15 м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (W=2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брызгоунос обычно возникает при скоростях 1,7...2,5 м/с) значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

Схема высокоскоростного туманоуловителя.

1 -брызгоуловитель

3-фильтрующий элемент

Высокоскоростной туманоуловитель с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок 2 толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 1, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэлемент нижней частью установлены в слой жидкости.


Схема фильтрующего элемента низкоскоростного туманоуловителя

3-цилиндры

4-волокнистый фильтроэлемент

5-нижний фланец

6-трубка гидрозатвора

В пространство между цилиндрами 3, изготовленными из сеток,
помещают волокнистый фильтроэлемент 4, который крепится с помощью
фланца 2 к корпусу туманоуловителя 1. Жидкость, осевшая на
фильтроэлементе; стекает на нижний фланец 5 и через трубку
гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые
низкоскоростные туманоуловители обеспечивают высокую

эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большого размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5... 15 см, гидравлическое сопротивление сухих фильтроэлементов - 200... 1000 Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9... 0,98 при Ар=1500...2000 Па, от тумана с частицами менее 3 мкм.


СПИСОК ЛИТЕРАТУРЫ.

Аршинов В. А., Алексеев Г. А. Резание металлов и режущий
инструмент. Изд. 3-е, перераб. и доп. Учебник для машиностроительных техникумов. М.: Машиностроение, 1976.

Барановский Ю. В., Брахман Л. А., Бродский Ц. 3. и др. Ре­
жимы резания металлов. Справочник. Изд. 3-е, переработанное и дополненное. М.: Машиностроение, 1972.

Барсов А. И. Технология инструментального производства.
Учебник для машиностроительных техникумов. Изд. 4-е, исправленное и дополненное. М.: Машиностроение, 1975.

ГОСТ 2848-75. Конусы инструментов. Допуски. Методы и
средства контроля.

ГОСТ 5735-8IE. Развертки машинные, оснащенные пластинами твердого сплава. Технические условия.

Грановский Г. И., Грановский В. Г. Резание металлов: Учеб­
ник для машиностр. и приборостр. спец. вузов. М.: Высш. шк.,
1985.

Иноземцев Г. Г. Проектирование металлорежущих инструментов: Учеб. пособие для втузов по специальности
«Технология машиностроения, металлорежущие станки и инструменты». М.: Машиностроение, 1984.

Нефедов Н. А., Осипов К. А. Сборник задач и примеров по
резанию металлов и режущему инструменту: Учеб. пособие для
техникумов по предмету «Основы учения о резании металлов и
режущий инструмент». 5-е изд., перераб. и доп. М.: Машино­
строение, 1990.

Основы технологии машиностроения. Под ред. B.C. Корсакова. Изд. 3-е, доп. и перераб. Учебник для вузов. М.: Маши­ностроение, 1977.


Отраслевая методика по определению экономической эффективности использования новой техники, изобретений и рационализаторских предложений.

Сахаров Г. П., Арбузов О. Б., Боровой Ю. Л. и др. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие стан­ки и инструменты». М.: Машиностроение, 1989.


Изд. 3-е переработ. Т. 1. Под ред. А. Г. Косиловой и Р. К. Мещерякова. М.: Машиностроение, 1972.

Справочник технолога-машиностроителя. В двух томах.
Изд. 3-е переработ. Т. 2. Под ред. А. Н. Малова. М.: Машино­
строение, 1972.

Таратынов О. В., Земсков Г. Г., Баранчукова И. М. и др.
Металлорежущие системы машиностроительных производств:
Учеб. пособие для студентов технических вузов. М.: Высш.
шк., 1988.

Таратынов О. В., Земсков Г. Г., Тарамыкин Ю. П. и др.
Проектирование и расчет металлорежущего инструмента на
ЭВМ:. Учеб. пособие для втузов. М.: Высш. шк., 1991.

Турчин А. М., Новицкий П. В., Левшина Е. С. и др. Электрические измерения неэлектрических величин. Изд. 5-е, перераб. и доп. Л.: Энергия, 1975.

Худобин Л. В., Гречишников В. А. и др. Руководство к дипломному проектированию по технологи машиностроения, металлорежущим станкам и инструментам: Учеб. пособие для вузов по специальности «Технология машиностроения, метал­лорежущие станки и инструменты». М., Машиностроение, 1986.

Юдин Е. Я., Белов С. В., Баланцев С. К. и др. Охрана труда
в машиностроении: Учебник для машиностроительных вузов.
М.: Машиностроение, 1983.

Методические указания к практическому занятию «Расчет
механической вентиляции производственных помещений»./ Б.
С. Иванов, М.: Ротапринт МАСИ (ВТУЗ-ЗИЛ), 1993.

Методические указания по дипломному проектированию
«Нормативно-техническая документация по охране труда и окружающей среды». Часть 1./ Э. П. Пышкина, Л. И. Леонтьева, М.: Ротапринт МГИУ, 1997.

Методические указания по лабораторной работе «Изучение
устройства и порядка использования средств пожаротушеия»./
Б. С. Иванов, М.: Ротапринт Завода-втуза при ЗИЛе, 1978.

А Дубина. «Машиностроительные расчеты в среде Excel 97/2000.» - СПб.: БХВ – Санкт-Петербург, 2000.

ВВЕДЕНИЕ

Возрождение Российской промышленности первейшая задача укрепления экономики страны. Без сильной, конку­рентоспособной промышленности невозможно обеспечить нормальную жизнь страны и народа. Рыночные отношения, самостоятельность заводов, отход от планового хозяйства диктуют производителям выпускать продукцию пользую­щуюся мировым спросом и с минимальными затратами. На инженерно-технический персонал заводов возложены задачи по выпуску данной продукции с минимальными затратами в кратчайшие сроки, с гарантированным качеством.

Этого можно достичь применяя современные техноло­гии обработки деталей, оборудование, материалы, системы автоматизации производства и контроля качества продук­ции. От принятой технологии производства во многом за­висит надежность работы выпускаемых машин, а также экономика их эксплуатации.

Актуальна задача повышения технологического обес­печения качества производимых машин, и в первую очередь их точности. Точность в машиностроении имеет большое значение для повышения эксплуатационного качества ма­шин и для технологии их производства. Повышение точно­сти изготовления заготовок снижает трудоемкость механи­ческой обработки, а повышение точности механической об­работки сокращает трудоемкость сборки в результате устра­нения пригоночных работ и обеспечения взаимозаменяемо­сти деталей изделия.

По сравнению с другими методами получения дета­лей машин обработка резанием обеспечивает наибольшую их точность и наибольшую гибкость производственного про­цесса, создает возможности быстрейшего перехода от обра­ботки заготовок одного размера к обработке заготовок дру­гого размера.

Качество и стойкость инструмента во многом определя­ют производительность и эффективность процесса обработ­ки, а в некоторых случаях и вообще возможность получения деталей требуемых формы, качества и точности. Повышение качества и надежности режущего инструмента способствуют повышению производительности обработки металлов резани­ем.

Развертка - это режущий инструмент, позволяющий полу­чить высокую точность обрабатываемых деталей. Она являет­ся недорогим инструментом, а производительность труда при работе разверткой высока. Поэтому она широко использу­ется при окончательной обработке различных отверстий деталей машин. При современном развитии машинострои­тельной промышленности номенклатура производимых дета­лей огромна и разнообразие отверстий требующих обра­ботки развертками очень велико. Поэтому перед конструк­торами часто стоит задача разработать новую развертку. По­мочь в этом им может пакет прикладных программ на ЭВМ, рассчитывающий геометрию режущего инструмента и выводящий на плоттере рабочий чертеж развертки.

Последовательность проектирования и методы расче­та режущего инструмента основаны как на общих законо­мерностях процесса проектирования, так и на специфических особенностях, характерных для режущего инструмента. Каж­дый вид инструмента имеет конструктивные особенности, ко­торые необходимо учитывать при проектировании.

Специалисты, которым предстоит работать в металло­обрабатывающих отраслях промышленности, должны уметь грамотно проектировать различные конструкции режущих инструментов для современных металлообрабатывающих систем, эффективно используя вычислительную технику (ЭВМ) и достижения в области инструментального производ­ства.

Для сокращения сроков и повышения эффективности проектирования режущего инструмента используются автома­тизированные расчеты на ЭВМ, основой которых является программно-математическое обеспечение.

Создание пакетов прикладных программ для расчета геометрических параметров сложного и особо сложного ре­жущего инструмента на ЭВМ позволяет резко сократить за­траты конструкторского труда и повысить качество проекти­рования режущего инструмента.

Места, %; Тотд - время на отдых и личные потребности, %; К - коэффициент, учитывающий тип производства; Кз - коэффициент, учитывающий условия сборки. Для общей сборки гидрозамка норма времени: =1,308 мин. Расчет потребного количества сборочных стендов и коэффициентов его загрузки Найдем расчетное количество сборочных стендов, шт. =0,06 шт. Округляем в большую сторону СР=1. ...

Похожие публикации