Интернет-журнал дачника. Сад и огород своими руками

Зольность дров на рабочую массу. Свойства дров разных пород: показатели качества древесины. Виды древесных отходов

Влажность древесной биомассы - это количественная характеристика, показывающая содержание в биомассе влаги. Различают абсолютную й относительную влажность биомассы.

Абсолютной влажностью называют отношение массы влаги к массе сухой древесины:

Wa= т~т° 100,

Где №а - абсолютная влажность, %; т - масса образца во влажном состоянии, г; т0 - масса того же образца, высушен­ного до постоянного значения, г.

Относительной или рабочей влажностью на­зывают отношение массы влаги к массе влажной древесины:

Где Wр - относительная, или рабочая, влажность, 10

Пересчет абсолютной влажности в относительную и наобо­рот производится по формулам:

Зола подразделяется на внутреннюю, содержащуюся в древесном веществе, и внешнюю, попавшую в топливо при заготовке, хранении и транспортировании биомассы. В зависи­мости от вида зола имеет различную плавкость при нагревании до высокой температуры. Легкоплавкой называется зола, имеющая температуру начала жидкоплавкого состояния ниже 1350°. Среднеплавкая зола имеет температуру начала жидкоплавкого состояния в пределах 1350-1450 °С. У туго­плавкой золы эта температура выше 1450 °С.

Внутренняя зола древесной биомассы является тугоплавкой, а внешняя - легкоплавкой. Содержание золы в различных ча­стях деревьев различных пород показано в табл. 4.

Зольность стволовой древесины. Содержание внутренней золы стволовой древесины изменяется в пределах от 0,2 до 1,17%. На основании этого в соответствии с рекомендациями по нормативному методу теплового расчета котельных агрегатов в расчетах топочных устройств зольность стволовой древе­сины всех пород должна приниматься равной 1 % сухой массы

4. Распределение золы в частях дерева для различных пород

Количество золы в абсолютно сухой массе, %

Ветви, сучья, корни

Древесины. Это правомерно, если попадание минеральных вклю­чений в измельченную стволовую древесину исключено.

Зольность коры. Зольность коры больше зольности стволовой древесины. Одной из причин этого является то, что поверхность коры все время роста дерева обдувается атмосферным возду­хом и улавливает при этом содержащиеся в нем минеральные аэрозоли.

По наблюдениям, проведенным ЦНИИМОД для сплавной древесины в условиях архангельских лесопильных и деревообра­батывающих предприятий, зольность отходов окорки составляла

У ели 5,2, у сосны 4,9%- Повышение зольности коры в этом случае объясняется загрязнением коры во время сплава хлыстов по рекам.

Зольность коры различных пород на сухую массу, по дан­ным А. И. Померанского , составляет: сосна 3,2 %, ель 3,95, береза 2,7, ольха 2,4 %. По данным НПО ЦКТИ им. И. И. Пол - зунова, зольность коры различных пород варьирует от 0,5 до 8%.

Зольность элементов кроны. Зольность элементов кроны превышает зольность древесины и зависит от породы древе­сины и места ее произрастания. По данным В. М. Никитина, зольность листьев 3,5 %. Ветки и сучья имеют внутреннюю зольность от 0,3 до 0,7%. Однако в зависимости от типа тех­нологического процесса заготовки древесины их зольность су­щественно изменяется из-за загрязнения их внешними мине­ральными включениями. Загрязнение ветвей и сучьев в про­цессе заготовки, трелевки и вывозки наиболее интенсивно при влажной погоде весной и осенью.

Плотность. Плотность материала характеризуется отношением его массы к объему. При изучении этого свойства применительно к древесной биомассе различают следующие по­казатели: плотность древесинного вещества, плотность абсо­лютно сухой древесины, плотность влажной древесины.

Плотность древесинного вещества - это отно­шение массы материала, образующего стенки клеток, к зани­маемому им объему. Плотность древесинного вещества одина­кова для всех пород древесины и равна 1,53 г/см3.

Плотность абсолютно сухой древесины есть отношение массы этой древесины к занимаемому ею объему:

P0 = m0/V0, (2.3)

Где ро - плотность абсолютно сухой древесины; то - масса об­разца древесины при №р=0; V0 - объем образца древесины при №р=0.

Плотность влажной древесины представляет собой отношение массы образца при данной влажности к его объему при той же влажности:

Р w = mw/Vw, (2.4)

Где рту - плотность древесины при влажности Wp; mw - масса образца древесины при влажности Vw - объем, за­нимаемый образцом древесины при влажности Wр.

Плотность стволовой древесины. Величина плотности ство­ловой древесины зависит от ее породы, влажности и коэффи­циента разбухания /Ср. Все породы древесины по отношению к коэффициенту разбухания КР разделяются на две группы. К первой группе относятся породы, у которых коэффициент разбухания /Ср = 0,6 (белая акация, береза, бук, граб, листвен­ница). Ко второй группе относятся все остальные породы, у ко­торых /<р=0,5.

По первой группе для белой акации, березы, бука, граба, лиственницы плотность стволовой древесины можно вычислить по следующим формулам:

Pw = 0,957-------- ------- р12, W< 23%;

100-0.4WP " (2-5)

Loo-УР р12" №р>23%

Для всех остальных пород плотность стволовой древесины вычисляется по формулам:

0* = П-Ш.00-0.5ГР Л7Р<23%; (2.6)

Ріг = °,823 100f°lpp Ри. її">"23%,

Где ріг - плотность при стандартной влажности, т. е. при абсо­лютной влажности 12 %.

Величина плотности при стандартной влажности определя­ется для различных пород древесины по табл. 6.

6. Плотность стволовой древесины различных пород прн стандартной влажности н в абсолютно сухом состоянии

Плотность, кг/м!

Плотность, кг/м3

Р0 в абсо­

Р0 в абсо­

Стандарт­

Стандарт­

Лиственница

Ясень обыкновен­

Орех грецкий

Акация белая

Плотность коры. Плотность коры исследована гораздо меньше. Имеются лишь отрывочные данные, которые дают довольно пеструю картину этого свойства коры. В настоящей работе будем ориентироваться на данные М. Н. Симонова и Н. Л. Леонтьева . Для расчета плотности коры при­мем формулы той же структуры, что и формулы для расчета плотности стволовой древесины, подставив в них коэффици­енты объемного разбухания коры. Плотность коры будем под­считывать по следующим формулам: коры сосны

(100-ТГР)Р13 ^р<230/

103,56- 1.332ГР" " (2.7)

1,231(1-0,011ГР)" ^>23%-"

Коры ели Pw

W P<23%; W*> 23%;

Гр<23%; Гр>23%.

Р w - (100 - WP) р12 102,38 - 1,222 WP

Коры березы

1,253(1 _0,01WP)

(100- WP)pia 101,19 - 1,111WP

1,277(1 -0,01 WP)

Плотность луба значительно выше, чем плотность корки. Об этом свидетельствуют данные А. Б. Большакова (Сверд - НИИПдрев) о плотности частей коры в абсолютно сухом со­стоянии (табл. 8).

Плотность гнилой древесины. Плотность гнилой древесины в начальной стадии гниения обычно не понижается, а в неко­торых случаях даже увеличивается. При дальнейшем развитии процесса гниения плотность гнилой древесины уменьшается и в конечной стадии становится значительно меньше плотности здоровой древесины,

Зависимость плотности гнилой древесины от стадии пораже­ния ее гнилью приведена в табл. 9.

9. Плотность гнили древесины в зависимости от стадии ее поражения

Рц(ЮО-ІГР) 106- 1.46WP

Значение pis гнилой древесины равно: гниль осины pi5 = = 280 кг/м3, гниль сосны pS5=260 кг/м3, гниль березы р15 = = 300 кг/м3.

Плотность элементов кроны деревьев. Плотность элементов кроны практически не изучена. В топливной щепе из элементов кроны преобладающим по объему компонентом является щепа из сучьев и ветвей, близкая по показателям плотности к ство­ловой древесине. Поэтому при проведении практических расче­тов в первом приближении можно принять плотность элементов кроны равной плотности стволовой древесины соответствующей породы.

Теплотворная способность дров зависит от породы деревьев и их влажности

Дровами мы называем кусочки древесины, используемые в реакциях быстрого окисления кислородом воздуха для получения света и тепла. Огонь разжигаем просто на земле, выехав на пикник. Или в специальных устройствах – мангалах, очагах, котлах, печах, такырах или других.

Дрова бывают разнообразные, количество тепла, полученного от их сжигания, разделенное на массу (объём), называется удельная теплота сгорания печного топлива. Теплотворная способность дров зависит от породы деревьев и их влажности. К тому же полнота сгорания и коэффициент использования энергии горения зависит и от других факторов. Разные печи, сила тяги, устройство дымохода – всё влияет на результат.

Сущность физического параметра

Энергия измеряется в «джоулях» – количеству работы по перемещению на 1 метр при приложении силы в 1 ньютон в направлении приложения. Или в «калориях» – количестве тепла, нужном для нагрева 1 г воды на 1 ˚С при давлении в 760 мм ртутного столба. Международная калория соответствует 4,1868 Джоуля.

Удельная теплоемкость топлива – количество тепла, получаемого при полном сгорании, разделенное на массу или объем топлива.

Величина непостоянная, так как дрова могут сильно различаться, соответственно, варьирует и этот параметр. В лаборатории удельная теплота измеряется сжиганием в специальных устройствах. Результат верен для конкретного образца, но только для него.

Полная удельная теплота печного топлива измеряется с одновременным охлаждением продуктов горения и конденсацией испаренной воды – чтобы учесть ВСЁ количество полученной энергии.

На практике чаще пользуются рабочая, а не удельная теплота сгорания, без учета всей полученной энергии.

Сущность процесса горения

Если нагревать древесину, то при 120–150 ˚С она становится темного цвета. Это медленное обугливание, превращение в древесный уголь. Доведя температуру до 350–350 ˚С, увидим термическое разложение, почернение с выделением белого или бурого дыма. Нагревая дальше, выделяемые пиролизные газы (СО и летучие углеводороды) загорятся, превратившись в языки пламени. Прогорев какое-то время, количество летучих веществ снизится, и угольки будут продолжать гореть, но уже без пламени. На практике для поджигания и поддержания горения древесина должно разогреться до 450–650 ˚С.


Процесс горения дров

В дальнейшем температура горения печного топлива в топке составляет от приблизительно 500 ˚С (тополь) до 1000 и выше (ясень, бук). Эта величина сильно зависит от тяги, конструкции печи и многих других факторов.

Зависимость от влажности

Чем выше влажность, тем хуже горение, ниже КПД печи, сложнее зажечь и поддержать огонь. И меньше теплотворная способность дров.

Показатели теплотворной способности (количество теплоты, выделившееся при полном сгорании 1 кг дров в зависимости от влажности)

Снижается и удельная теплота печного топлива, и коэффициент её использования. Причины следующие.

  1. Вода в составе снижает количество топлива как такового: при влажности 50% в дровах воды – половина. И гореть она не будет…
  2. Часть энергии печного топлива потратится на нагрев и испарение влаги.
  3. Мокрая древесина лучше проводит тепло, что мешает прогреть поджигаемую часть полена до температуры возгорания.

Свежесрубленная древесина разнится по влажности в зависимости от времени рубки, породы дерева, места произрастания, но в среднем воды в ней около 50%.

Поэтому её и складывают в поленницы под навесом. За время хранения часть влаги испарится. При снижении влажности с 50 до 20% увеличивается удельная теплота сгорания печного топлива приблизительно вдвое.

Зависимость от плотности

Как ни странно, но состав деревьев разных пород похож: 35–46% целлюлозы, 20–28% лигнина + эфиры, смолы, другие вещества. А разница в теплоте сгорания печного топлива обусловлена пористостью, то есть тем, сколько места занимают пустоты. Соответственно, чем плотнее дерево, тем больше теплотворность дров из него. Качественные топливные пеллеты, получаемые просушкой и прессованием древесных отходов имеют плотность 1,1 кг/дм 3 , то есть выше плотности воды. В которой тонут.

Хозяйственные особенности различных дров

Имеет значение форма: чем мельче поленья, тем легче загораются и быстрее сгорают. Понятно, длина зависит и от конструкции: в печи или камине слишком длинные нельзя расположить, концы выпирают наружу. Слишком короткие – лишний труд при распиле или рубке. Температура горения дров зависит от размера влажности, породы дерева, количества подведенного воздуха. Ниже всего температура при сгорании дров из тополя, выше при горении твердых пород: ясеня, горного клена, дуба.

О значении влажности писалось выше. От нее и сильно зависят не только теплоотдача топлива в печи, но и трудозатраты на раскол или распиливание. Легче колется и пилится влажная, свежесрубленная древесина. Впрочем, слишком влажная вязкая, от этого колется плохо. Комлевая часть плотнее, а выкорчеванные пни, участки возле сучков обладают повышенной крепостью. Там слои дерева переплетаются, от этого намного прочнее. Дуб хорошо раскалывается в продольном направлении, что издревле используют бондари. Получение гонты, дранки, колка дров имеет свои секреты.

Ель – «стреляющая» порода, оттого нежелательная для использования в каминах или кострах. При нагреве внутренние «пузыри» со смолой вскипают и отбрасывают горящие частицы довольно далеко, что опасно: легко прожечь одежду возле костра. Или может привести к возгоранию возле камина. В закрытой топке печи это неважно. Береза даёт жаркое пламя, это отличные дрова. Но при плохой тяге у неё образуется много смолистых веществ (раньше делали берёзовый деготь), много откладывается сажи. Ольха и осина, напротив, дает мало сажи. Именно из осины, в основном, делают спички.

На практике удобно свежесрубленные дрова сразу распилить и расколоть. Потом сложить под навесами, делая поленницы так, чтобы воздух проходил, просушивая топливо и увеличивая теплоотдачу. Колка дров – трудоемкое занятие, поэтому покупая, обращайте на это внимание. А еще на то, сложенные или насыпью дрова вам привезут.

Во втором случае печное топливо размещается в кузове «рыхлее», и клиент платит частично за воздух. К тому же используемое для обогрева жидкое или газообразное топливо имеет плюс: легко автоматизировать подачу. Дрова требуют много ручной работы. Это всё стоит учитывать при выборе печи или котла для жилища.

Видео: Как выбрать дрова для топки

Таблица 1 - Содержание золы и зольных элементов в древесине различных пород деревьев

Древесное

растение

Зола,

Сумма

Сосна

0,27

1111,8

274,0

53,4

4,08

5,59

1,148

0,648

0,141

0,778

0,610

0,191

1461,3

Ель

0,35

1399,5

245,8

11,0

9,78

12,54

7,76

1,560

1,491

0,157

0,110

0,091

0,041

1689,8

Пихта

0,46

1269,9

1001,9

16,9

16,96

6,85

6,16

1,363

2,228

0,237

0,180

0,098

0,049

2322,8

Лиственница

0,22

845,4

163,1

23,80

13,34

3,41

1,105

0,790

0,194

0,141

0,069

0,154

1057,4

Дуб

0,31

929,7

738,3

14,4

7,88

3,87

1,29

2,074

0,987

0,524

0,103

0,082

0,024

1699,2

Вяз

1,15

2282,2

2730,3

19,2

4,06

10,05

4,22

2,881

1,563

0,615

0,116

0,153

0,050

5055,4

Липа

0,52

1860,9

792,6

12,3

9,40

8,25

2,58

1,199

1,563

0,558

0,136

0,102

0,043

2689,6

Береза

0,45

1632,8

541,0

17,8

23,81

4,30

20,12

1,693

1,350

0,373

0,163

0,105

0,081

2243,6

Осина

0,58

2100,7

781,4

12,4

5,70

9,19

12,99

1,352

1,854

0,215

0,069

0,143

0,469

2926,5

Тополь

1,63

4759,3

1812,0

18,1

8,19

17,18

15,25

1,411

1,737

0,469

0,469

0,273

0,498

6634,8

Ольха

черная

0,50

1212,6

599,6

131,1

15,02

4,10

5,08

2,335

1,596

0,502

0,251

0,147

0,039

1972,4

Ольха серая

0,43

1623,5

630,3

30,6

5,80

6,13

9,35

2,059

1,457

0,225

0,198

0,152

0,026

2309,8

Черемуха

0,45

1878,0

555,6

4,56

11,49

4,67

1,599

1,287

0,347

0,264

0,124

0,105

2466,0

Все древесные породы по содержанию в их древесине зольных элементов объединяются в два крупных кластера (рис. 1). В первый, возглавляемый сосной обыкновенной, входят ольха черная, осина и тополь бальзамический (берлинский), а во второй – все остальные породы во главе с елью и черемухой птичьей. Отдельный подкластер слагают светолюбивые породы: береза повислая и лиственница сибирская. Особняком от них отстоит вяз гладкий. Наибольшие различия между кластерами № 1 (сосновым) и № 2 (еловым) отмечаются по содержанию Fe , Pb , Co и Cd (рис. 2).

Рисунок 1- Дендрограмма сходства пород деревьев по зольному составу их древесины, построенная способом Варда по матрице нормированных данных

Рисунок 2- Характер различия древесных растений, относящихся к разным кластерам, по зольному составу их древесины

Выводы.

1.Более всего содержится в древесине всех пород деревьев кальция, являющегося основой оболочки клеток. За ним следует калий. На порядок меньше в древесине железа, марганца, стронция и цинка. Замыкают ранговый ряд Ni , Pb , Со и Cd .

3.Древесные породы, произрастающие в пределах одного пойменного биотопа, существенно различаются между собой по эффективности использования ими питательных веществ. Наиболее эффективно использует почвенный потенциал лиственница сибирская, в 1 кг древесине которой золы содержится в 7,4 раза меньше, чем в древесине тополя - наиболее расточительной в экологическом плане породы.

4.Свойство высокого потребления минеральных веществ рядом древесных растений можно использовать в фитомелиорации при создании насаждений на техногенно- или природно- загрязненных землях.

Список использованных источников

1. Адаменко, В.Н. Химический состав годичных колец деревьев и состояние природной среды / В.Н. Адаменко, Е.Л. Журавлева, А.Ф. Четвериков // Докл. АН СССР.- 1982.- Т. 265, № 2. - С. 507-512.

2. Лянгузова, И.В. Химический состав растений при атмосферном и почвенном загрязнении / И.В. Лянгузова, О.Г. Чертов // Лесные экосистемы и атмосферное загрязнение. - Л.: Наука, 1990. С. 75-87.

3. Демаков, Ю.П. Изменчивость содержания зольных элементов в древесине, коре и хвое сосны обыкновенной / Ю.П. Демаков, Р.И. Винокурова, В.И. Таланцев, С.М. Швецов // Лесные экосистемы в условиях изменяющегося климата: биологическая продуктивность, мониторинг и адаптационные технологии: материалы международной конференции с элементами научной школы для молодёжи [Электронный ресурс]. - Йошкар-Ола: МарГТУ, 2010. С. 32-37. http://csfm.marstu.net/publications.html

4. Демаков, Ю.П. Динамика содержания зольных элементов в годичных кольцах старовозрастных сосен, произрастающих в пойменных биотопах / Ю.П. Демаков, С.М. Швецов, В.И. Таланцев // Вестник МарГТУ. Сер. «Лес. Экология. Природопользование» . 2011. - № 3. - С. 25-36.

5. Винокурова, Р.И. Специфичность распределения макроэлементов в органах древесных растений елово-пихтовых лесов Республики Марий Эл / Р.И. Винокурова, О.В. Лобанова // Вестник МарГТУ. Сер . «Лес. Экология. Природопользование».- 2011.- № 2.- С. 76-83.

6. Ахромейко А.И. Физиологические обоснование создания устойчивых лесных насаждений / А.И. Ахромейко. – М.: Лесная пром-сть, 1965. – 312 с.

7. Ремезов, Н.П. Потребление и круговорот азота и зольных элементов в лесах европейской части СССР / Н.П. Ремезов, Л.Н. Быкова, К.М. Смирнова.- М.: МГУ, 1959. – 284 с.

8. Родин, Л.Е. Динамика органического вещества и биологический круговорот зольных элементов и азота в основных типах растительности земного шара / Л.Е. Родин, Н.И. Базилевич. – М.-Л.: Наука, 1965. -

9. Методика выполнения измерений валового содержания меди, кадмия, цинка, свинца, никеля, марганца, кобальта, хрома методом атомно-абсорбционной спектроскопии. – М.: ФГУ ФЦАО, 2007. – 20 с.

10. Методы биогеохимического исследования растений / Под ред. А.И. Ермакова. – Л.: Агропромиздат, 1987. – 450 с.

11. Афифи, А. Статистический анализ. Подход с использованием ЭВМ / А. Афифи, С. Эйзен. - М.: Мир, 1982. - 488 с.

12. Факторный, дискриминантный и кластерный анализ / Дж. Ким, Ч. Мьюллер, У. Клекка и др. - М.: Финансы и статистика, 1989. - 215 с.

Дрова - самый древний и традиционный источник тепловой энергии, который относится к возобновляемому виду топлива. По определению, дрова - это соразмерные очагу куски древесины, используемые для разведения и поддержания в нём огня. По своему качеству, дрова - это самое нестабильное топливо в мире.

Тем не менее, весовой процентный состав любой дровяной массы примерно одинаков. В него входят - до 60% целлюлозы, до 30% лигнина, 7...8% сопутствующих углеводородов. Остальное (1...3%) -

Государственный стандарт на дрова

На территории России действует
ГОСТ 3243-88 Дрова. Технические условия
Скачать (cкачиваний: 1689)

Стандарт времён Советского Союза определяет:

  1. Сортамент дров по размеру
  2. Допустимое количество гнилой древесины
  3. Сортамент дров по теплотворности
  4. Методику учёта количества дров
  5. Требования к транспортированию и хранению
    дровяного топлива

Из всей ГОСТ-овской информации, самая ценная - это методы обмеров дровяных штабелей и коэффициенты для перевода величин из складочной меры в плотную (из складометра - в кубометр). Кроме этого, вызывает ещё некоторый интерес пунктик по ограничению ядровой и заболонной гнили (не более 65% площади торца), а также запрет на наружную трухлявость. Вот только трудно представить себе такие гнилые дрова в наш космический век погони за качеством.

Что касается теплотворности,
то ГОСТ 3243-88 разделяет все дрова на три группы:

Учёт дров

Для учёта любой материальной ценности, самое главное - способы и методы подсчёта её количества. Количество дров можно учитывать, или в тоннах и килограммах, или в складочных и кубических метрах и дециметрах. Соответственно - в массовых или в объёмных единицах измерения

  1. Учёт дров в массовых единицах измерения
    (в тоннах и килограммах)
    Этот способ учёта дровяного топлива используется крайне редко из-за своей громоздкости и неповоротливости. Он позаимствован у строителей-деревообработчиков и является альтернативным методом для тех случаев, когда дрова проще взвесить, нежели определить их объём. Так, например, иногда при оптовых поставках дровяного топлива бывает проще взвешивать отгруженные «с верхом» вагоны и автомобили-лесовозы, нежели определять объём возвышающихся на них бесформенных дровяных «шапок»

    Преимущества

    - простота обработки информации для дальнейшего подсчёта суммарной теплотворности топлива при теплотехнических расчётах. Потому что, теплотворность весовой меры дров высчитывается по и практически неизменна для любой породы дерева, независимо от географического места её и степени . Таким образом, при учёте дров в массовых единицах происходит учёт чистого веса горючего материала за минусом веса влаги, количество которой определяется прибором-влагомером

    Недостатки
    учёта дров в массовых единицах измерения
    - способ абсолютно неприемлем для обмера и учёта партий дров в полевых условиях лесозаготовки, когда требуемого спецоборудования (весов и прибора-влагомера) может не оказаться под рукой
    - результат замера влажности вскорости становится неактуальным, дрова быстро сыреют или подсыхают на воздухе

  2. Учёт дров в объёмных единицах измерения
    (в складочных и кубических метрах и дециметрах)
    Этот способ учёта дровяного топлива получил самое широкое распространение, как наиболее простой и быстрый способ учёта дровяной топливной массы. Поэтому, учёт дров повсеместно производится в объёмных единицах измерения - складометрах и кубометрах (складочная и плотная меры)

    Преимущества
    учёта дров в объёмных единицах измерения
    - предельная простота в исполнении обмеров дровяных штабелей линейным метром
    - результат обмера легко контролируется, остаётся неизменным долгое время и не вызывает сомнениям
    - методика обмеров дровяных партий и коэффициенты для перевода величин из складочной меры в плотную стандартизированы и изложены в

    Недостатки
    учёта дров в массовых единицах измерения
    - платой за простоту учёта дров в объёмных единицах становится усложнение дальнейших теплотехнических расчётов для подсчёта суммарной теплотворности дровяного топлива (нужно учитывать породу дерева, место его произрастания, степень трухлявости дров и т.д.)

Теплотворность дров

Теплотворность дров,
она же - теплота сгорания дров,
она же - теплотворная способность дров

Чем теплотворность дров отличается от теплотворности древесины?

Теплотворность древесины и теплотворность дров - родственные и близкие по значению величины, отождествляемые в повседневной жизни с понятиями «теория» и «практика». В теории мы изучаем теплотворность древесины, а на практике - имеем дело с теплотворностью дров. При этом, реальные дровяные чурбаки могут иметь куда более широкий спектр отклонений от нормы, нежели лабораторные образцы.

Например, у реальных дров есть кора, которая не является древесиной в прямом смысле этого слова и, тем не менее - занимает объём, участвует в процессе горения дров и имеет собственную теплотворность. Зачастую, теплотворность коры значительно отличается от теплотворности самой древесины. Кроме этого, реальные дрова могут быть , иметь разную плотность древесины в зависимости от , иметь большой процент и др.

Таким образом, для реальных дров - показатели теплотворности носят обобщённый и слегка заниженный характер, поскольку для реальных дров - нужно учитывать в комплексе все отрицательные факторы, снижающие их теплотворность. Этим и объясняется разница в меньшую сторону по величине между теоретически-расчётными значениями теплотворности древесины и практически-прикладными значениями теплотворности дров.

Иными словами, теория и практика - это разные вещи.

Теплотворность дров - это объём полезного тепла, образующийся при их сгорании. Под полезным теплом подразумевается теплота, которую можно отобрать от очага без ущерба для процесса горения. Теплотворность дров - важнейший показатель качества дровяного топлива. Теплотворность дров может колебаться в широких пределах и зависит, в первую очередь, от двух факторов - самой древесины и её .

  • Теплотворность древесины зависит от количества горючего древесинного вещества, присутствующего в единице массы или объёма древесины. (более подробно про теплотворность древесины в статье - )
  • Влажность древесины зависит от количества воды и иной влаги, присутствующих в единице массы или объёма древесины. (более подробно про влажность древесины в статье - )

Таблица объёмной теплотворности дров

Градация теплотворности по
(при влажности древесины 20%)

Порода дерева удельная теплотворная способность дров
(ккал/дм 3)
Берёза 1389...2240

Первая группа
по ГОСТ 3243-88:

берёза, бук, ясень, граб, ильм, вяз, клён, дуб, лиственница

бук 1258...2133
ясень 1403...2194
граб 1654...2148
ильм не найдено
(аналог - вяз)
вяз 1282...2341
клён 1503...2277
дуб 1538...2429
лиственница 1084...2207
сосна 1282...2130

Вторая группа
по ГОСТ 3243-88:

сосна, ольха

ольха 1122...1744
ель 1068...1974

Третья группа
по ГОСТ 3243-88:

ель, кедр, пихта, осина, липа, тополь, ива

кедр 1312...2237
пихта

не найдено
(аналог - ель)

осина 1002...1729
липа 1046...1775
тополь 839...1370
ива 1128...1840

Теплотворность гнилых дров

Абсолютно верно утверждение, что гниль ухудшает качество дров и уменьшает их теплотворность. Но вот, на сколько сильно уменьшается теплотворность гнилых дров - это вопрос. Советские ГОСТ 2140-81 и определяют методику измерения размеров гнили, ограничивают количество гнили в полене и количество гнилых поленьев в партии (не более 65% площади торца и не более 20% от общей массы, соответственно). Но, при этом - стандарты никак не указывают на изменение теплотворности самих дров.

Очевидно, что в пределах требований ГОСТ-ов не наступает сколь существенного изменения общей теплотворности дровяной массы из-за гнили, поэтому - отдельными гнилыми чурбаками можно смело пренебречь.

Если же гнили больше, чем допустимо по стандарту, то учёт теплотворности таких дров целесообразно производить в единицах измерения. Потому что, при гниении древесины происходят процессы, которые разрушают вещество и нарушают его клеточную структуру. При этом, соответственно - уменьшается древесины, что в первую очередь сказывается на её весе и практически не сказывается на её объёме. Таким образом, массовые единицы теплотворности будут более объективны для учёта теплотворности очень гнилых дров.

По определению, массовая (весовая) теплотворность дров - практически не зависит от их объёма, породы дерева и степени трухлявости. И, только влажность древесины - оказывает большое влияние на массовую (весовую) теплотворную способность дров

Теплотворность весовой меры трухлых и гнилых дров практически равна теплотворности весовой меры обычных дров и зависит только от влажности самой древесины. Потому что, только вес воды вытесняет вес горючего древесинного вещества из весовой меры дров, плюс потери тепла на испарение воды и разогрев водяного пара. Что собственно нам и надо.

Теплотворность дров из разных регионов

Объёмная теплотворность дров для одной и той же породы дерева, произрастающего в разных регионах может отличаться за счёт изменения плотности древесины в зависимости от водонасыщённости почвы в районе произрастания. Причём, совсем не обязательно это должны быть разные регионы или области страны. Даже в пределах небольшого участка (10...100 км) лесозаготовки, теплотворность дров для одной и той же породы дерева может изменяться с разницей в 2...5% за счёт изменения древесины. Это объясняется тем, что в засушливой местности (в условиях недостатка влаги) нарастает и образуется более мелкая и плотная клеточная структура древесины, нежели в богатой на воду болотистой земле. Таким образом, суммарное количество горючего вещества в единице объёма будет выше для дров, заготовленных на более сухих участках даже для одного и того же района лесозаготовки. Конечно, разница не так уж и велика, примерно 2...5%. Тем не менее, при крупных заготовках дров это может дать реальный экономический эффект.

Массовая теплотворность для дров из одной и той же породы дерева, произрастающего в разных регионах абсолютно не будет разниться, поскольку теплотворность не зависит от плотности древесины, а зависит только от её влажности

Зола | Зольность дров

Зола - это минеральные вещества, которые содержатся в дровах и которые остаются в твёрдом остатке после полного сгорания дровяной массы. Зольность дров - это степень их минерализации. Зольность дров измеряется в процентах от общей массы дровяного топлива и показывает на количественное содержание в нём минеральных веществ.

Различают внутреннюю и внешнюю золу

Внутренняя зола Внешняя зола
Внутренняя зола - это минеральные вещества, которые содержатся непосредственно в Внешняя зола - это минеральные вещества, которые попали в дрова извне (например, при заготовке, транспортировке или хранении)
Внутренняя зола - тугоплавкая масса (выше 1450 °С), которая легко удаляется из высокотемпературной зоны горения топлива Внешняя зола - легкоплавкая масса (менее 1350°С), которая спекается в шлак, прикипающий к футеровке камеры сгорания отопительного агрегата. Как следствие такого спекания и прикипания - внешняя зола плохо удаляется из высокотемпературной зоны горения топлива
Содержание внутренней золы древесинного вещества находится в пределах от 0,2 до 2,16% от общей дровяной массы Содержание внешней золы может достигать 20% от общей дровяной массы
Зола - это нежелательная часть топлива, которая снижает его горючую составляющую и затрудняет эксплуатацию отопительных агрегатов

Дрова - куски дерева, которые предназначены для сжигания в печах, каминах, топках или кострах для получения тепла, жара и света.

Каминные дрова в основном заготавливаются и поставляются в пиленном и колотом виде. Содержание влаги должно быть как можно меньшим. Длина поленьев в основном 25 и 33 см. Такие дрова продают в насыпных складометрах или фасуют, и продают по весу.

Для отопительных целей применяются различные дрова. Приоритетной характеристикой, по которой выбирают те или иные дрова для каминов и печей, является их теплотворная способность, длительность горения и комфорт при использовании (картина пламени, запах). Для отопительных целей желательно, чтобы тепловыделение происходило медленнее, но более продолжительное время. Для отопительных целей лучше всего подходят все дрова из лиственных пород.

Для топки печей и каминов используют преимущественно дрова таких пород, как дуб, ясень, берёза, лещина, тис, боярышник.

Особенности горения дров разных пород древесины:

Дрова из бука, березы, ясеня, лещины трудно растапливать, но они могут гореть сырыми, потому что имеют небольшую влажность, причем дрова из всех этих пород деревьев, кроме бука, легко раскалываются;

Ольха и осина сгорают без образования сажи, более того - они выжигают ее из дымохода;

Березовые дрова хороши для тепла, но при недостатке воздуха в топке, горят дымно и образуют деготь (березовую смолу), который оседает на стенках трубы;

Пни и корни дают замысловатый рисунок огня;

Ветки можжевельника, вишни и яблони дают приятный аромат;

Сосновые дрова горят жарче еловых из-за большего содержания смолы. При горении смоленых дров, резком повышении температуры с треском лопаются маленькие полости в древесине, в которых скапливается смола, и во все стороны разлетаются искры;

Лучшей теплоотдачей обладают дубовые дрова, единственный их недостаток - они плохо раскалываются, так же как и дрова из граба;

Дрова из груши и яблони легко раскалываются и хорошо горят, издавая приятный запах;

Дрова из пород средней твердости, как правило, легко колоть;

Долго тлеющие угли дают дрова из кедра;

Дрова из вишни и вяза при горении дымят;

Дрова из платана легко растапливаются, но тяжело колются;

Меньше подходят для топки дрова хвойных пород, потому что они способствуют образованию смолистых отложений в трубе и имеют низкую теплотворную способность. Сосновые и еловые дрова легко колоть и растапливать, но они дымят и искрят;

К породам деревьев с мягкой древесиной относят также тополь, ольху, осину, липу. Дрова этих пород хорошо горят, дрова из тополя сильно искрят и очень быстро прогорают;

Бук - дрова этой породы считают классическими каминными дровами, так как у бука красивая картина пламени и хорошее развитие жара при почти полном отсутствии искр. Ко всему перечисленному следует добавить - буковые дрова имеют очень высокий показатель теплотворной способности. Запах горящих буковых дров тоже оценён высоко - поэтому и для копчения продуктов в основном применяются буковые дрова. Дрова из бука универсальны в применении. Исходя из перечисленного, стоимость буковых дров высокая.

Необходимо учитывать тот факт, что показатель теплотворной способности дров разных пород древесины сильно колеблется. В результате чего получаем колебания плотности древесины и колебания в пересчётных коэффициентах кубометр => складометр.

Ниже приведена таблица со средними значениями теплотворной способности на один складометр дров.

Дрова (естественная сушка) Теплотворная способность кВт.ч/кг Теплотворная способность мега Джоуль/кг Теплотворная способность Мвтч./
складометр

Объёмная плотность в кг/дм³
Плотность кг/
складометр
Грабовые дрова 4,2 15 2,1 0,72 495
Буковые дрова 4,2 15 2,0 0,69 480
Ясеневые дрова 4,2 15 2,0 0,69 480
Дубовые дрова 4,2 15 2,0 0,67 470
Берёзовые дрова 4,2 15 1,9 0,65 450
Дрова из лиственницы 4,3 15,5 1,8 0,59 420
Сосновые дрова 4,3 15,5 1,6 0,52 360
Еловые дрова 4,3 15,5 1,4 0,47 330

1 складометр сухой древесины лиственных деревьев заменяет около 200 до 210 литров жидкого топлива или 200 до 210 м³ природного газа.

Советы по выбору древесины для костра.

Костра не будет без дров. Как я уже говорил, что бы костер горел долго, для этого нужно готовиться. Готовить дрова. Чем больше, тем лучше. Переусердствовать не нужно, но небольшой запас на всякий случай иметь нужно. Проведя две, три ночи в лесу, вы наверняка сможете уже более точно определить необходимый запас дров на ночь. Конечно, можно математически вычислить, какой объем дров необходим для поддержания огня на определенное количество часов. Перевести сучки той или иной толщины в кубические метры. Но на практике такой расчет будет работать не всегда. Очень много факторов, которые не возможно просчитать, а если попытаться, то разброс будет достаточно велик. Только личная практика, дает более точные результаты.

Сильный ветер увеличивает скорость горения в 2-3 раза. Влажная, тихая погода, наоборот, замедляет горение. Костер может гореть и и во время дождя, только для этого необходимо его постоянно поддерживать. Во время дождя не надо класть в костер толстые поленья, они дольше разгораются и дождь может их просто затушить. Не забывайте, более тонкие ветки разгораются быстро, но и быстро прогорают. Их нужно использовать для разжигания более толстых веток.

Прежде чем рассказать о некоторых породных свойствах древесины во время горения, хочу еще раз напомнить, что если вас не заставляет нужда ночевать в непосредственной близости у костра, старайтесь жечь костер не ближе 1-1,5 метров от края вашей лежанки.

Чаще всего нам встречаются следующие породы деревьев: ель, сосна, пихта, лиственница, береза, осина, ольха, дуб, черемуха, ива. Итак, по порядку.

Ель,
как все смолистые породы деревьев горит жарко, быстро. Если древесина сухая, огонь распространяется по поверхности достаточно быстро. Если у вас нет возможности каким-нибудь образом разделить ствол небольшого дерева на относительно не большие равные части, и вы используете для костра все дерево целиком, будте очень осторожны. Огонь, по дереву может перейти за границу кострища и наделать много неприятностей. В таком случае, очистите достаточно места под кострище, чтобы огонь не смог распространиться дальше. Ель имеет свойство «стрелять». Во время горения, смола, которая находится в древесине, под воздействием высоких температур начинает кипеть, и не находя выхода, взрывается. Кусочек горящего дерева, который находится наверху, летит прочь от костра. Наверное многие, кто жег костер, замечали такое явление. Чтобы уберечься от таких сюрпризов, достаточно класть поленья торцом к вам. Угли обычно летят перпендикулярно стволу.

Сосна. Горит жарче и быстрее ели. Легко ломается, если дерево толщиной не более 5-10 см в диаметре. «Стреляет». Тонкие сухие ветки хорошо подходят как дрова второго и третьего плана для разжигания костра.

Пихта . Главной отличительной особенностью является, то, что она практически не «стреляет». Стволы сухостоя диаметром 20-30 см очень хорошо подходят для «нодьи», костра на всю ночь. Горит жарко, равномерно. Скорость горения между елью и сосной.

Лиственница. Это дерево, в отличии от других деревьев смолистых пород, на зиму сбрасывает хвою. Древесина более плотная и крепкая. Горит долго, дольше ели, равномерно. Дает много жару. Если вы нашли на берегу реки кусок сухой лиственницы, есть вероятность того, что прежде чем этот кусок попал на берег, он пролежал в воде какоето время. Такое дерево будет гореть гораздо дольше обычного, из леса. Дерево, находясь в воде, без доступа кислорода, становится плотнее и крепче. Конечно все зависит от срока нахождения в воде. Пролежав там несколько десятков лет, оно превратиться в труху.

Свойства древесины для топки


Пригодную для топки древесину разделяют на следующие основные категории:

Хвойные породы древесины

Лиственные породы древесины
Мягкие породы
Лиственные породы древесины Твердые породы
Сосна, ель, туя и другие Липа, осина, тополь и другие Дуб, береза, граб и другие
Отличаются высоким содержанием смолы, которая не сгорает полностью и засоряет своими остатками дымоход и внутренние части топки. При использовании такого топлива неизбежно образование копоти на стекле камина, если оно есть. Для данного вида топлива характерна более продолжительная сушка дров.
Из-за невысокой плотности дрова из таких пород быстро сгорают, не образуют углей, обладают низкой удельной теплотворной способностью Дрова из таких пород древесины обеспечивают стабильную рабочую температуру в топке и высокую удельную теплотворную способность

Большое значение при выборе топлива для камина или печи играет влажность древесины. Именно от влажности в большей мере зависит теплотворная способность дров. Принято считать, что наилучшим образом для топки пригодны дрова с содержанием влаги не более 25%. Показатели теплотворной способности (количество теплоты, выделившееся при полном сгорании 1 кг дров в зависимости от влажности) указаны в нижеприведенной таблице:

Дрова для топки необходимо тщательно и заранее приготавливать. Хорошие дрова должны сохнуть не меньше года. Минимальное время сушки зависит от месяца укладки поленницы (в днях):

Еще одним важным показателем, который характеризует качество дров для топки камина или печи, является плотность или твердость древесины. Наибольшей теплоотдачей обладает древесина твердых лиственных пород, наименьшей - древесина мягких пород. Показатели плотности древесины при влажности 12% указаны в нижеприведенной таблице:

Удельная теплотворная способность древесины различных пород.

Похожие публикации