Интернет-журнал дачника. Сад и огород своими руками

Центральная симметрия. Центральная и осевая симметрия

Гомотетия и подобие. Гомотетия - преобразование, при котором каждой точке М (плоскости или пространства) ставится в соответствие точка М", лежащая на ОМ (рис. 5.16), причем отношение ОМ":ОМ= λ одно и то же для всех точек, отличных от О. Фиксированная точка О называется центром гомотетии. Отношение ОМ": ОМ считают положительным, если М" и М лежат по одну сторону от О, отрицательным - по разные стороны. Число X называют коэффициентом гомотетии. При Х< 0 гомотетию называют обратной. При λ = - 1 гомотетия превращается в преобразование симметрии относительно точки О. При гомотетии прямая переходит в прямую, сохраняется параллельность прямых и плоскостей, сохраняются углы (линейные и двугранные), каждая фигура переходит в ей подобную (рис. 5.17).

Верно и обратное утверждение. Гомотетия может быть определена как аффинное преобразование, при котором прямые, соединяющие соответствующие точки, проходят через одну точку - центр гомотетии. Гомотетию применяют для увеличения изображений (проекционный фонарь, кино).

Центральная и зеркальная симметрии. Симметрия (в широком смысле) - свойство геометрической фигуры Ф, характеризующее некоторую правильность ее формы, неизменность ее при действии движений и отражений. Фигура Ф обладает симметрией (симметрична), если существуют нетождественные ортогональные преобразования, переводящие эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой этой фигуры. Так, плоская фигура (рис. 5.18) с точкой М, преобразующая-

ся в себя при зеркальном отражении, симметрична относительно прямой - оси АВ. Здесь группа симметрии состоит из двух элементов - точка М преобразуется в М".

Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, где n > 2 целое число, переводят ее в себя, то фигура Ф обладает симметрией n-го порядка относительно точки О - центра симметрии. Пример таких фигур - правильные многоугольники, например звездчатый (рис. 5.19), обладающий симметрией восьмого порядка относительно своего центра. Группа симметрии здесь - так называемая циклическая группа n-го порядка. Окружность обладает симметрией бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной симметрии является центральная симметрия (инверсия). В этом случае относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трех взаимно перпендикулярных плоскостей, т. е. точка О - середина отрезка, соединяющего симметричные точки Ф. Так, для куба (рис. 5.20) точка О является центром симметрии. Точки М и М" куба

(означает «соразмерность») — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под «симметрией» понимают всякую правильность во внутреннем строении тела или фигуры.

Центральная симметрия — симметрия относительно точки.

относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

В одномерном пространстве (на прямой) центральная симметрия является зеркальной симметрией.

На плоскости (в 2-мерном пространстве) симметрия с центром А представляет собой поворот на 180 градусов с центром А. Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию.

Центральную симметрию в трёхмерном пространстве называют также сферической симметрией. Её можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.

В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей, проходящих через центр симметрии.

Осевая симметрия — симметрия относительно прямой.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Осевая симметрия имеет два определения:

- Отражательная симметрия.

В математике осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осимметрична и имеет 3 оси симметрии, если это не квадрат.

- Вращательная симметрия.

В естественных науках под осевой симметрией понимают вращательную симметриею, относительно поворотов вокруг прямой. При этом тела называют осесимметричными, если они переходят в себя при любом повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.

С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колеса.

Научно-практическая конференция

МОУ «Средняя общеобразовательная школа № 23»

города Вологды

секция: естественно - научная

проектно-исследовательская работа

ВИДЫ СИММЕТРИИ

Выполнила работу ученица 8 «а» класса

Кренёва Маргарита

Руководитель: учитель математики высшей

2014 год

Структура проекта:

1. Введение.

2. Цели и задачи проекта.

3. Виды симметрии:

3.1. Центральная симметрия;

3.2. Осевая симметрия;

3.3. Зеркальная симметрия (симметрия относительно плоскости);

3.4. Поворотная симметрия;

3.5. Переносная симметрия.

4. Выводы.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Г. Вейль

Введение.

Тема моей работы была выбрана после изучения раздела «Осевая и центральная симметрия» в курсе «Геометрия 8 класса». Меня очень заинтересовала эта тема. Я захотела узнать: какие виды симметрии существуют, чем они отличаются друг от друга, каковы принципы построения симметричных фигур в каждом из видов.

Цель работы : Знакомство с различными видами симметрии.

Задачи:

    Изучить литературу по данному вопросу.

    Обобщить и систематизировать изученный материал.

    Подготовить презентацию.

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота». В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости.

Существуют две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Я остановлюсь на изучении геометрической симметрии .

В свою очередь, геометрической симметрии существует тоже несколько видов: центральная, осевая, зеркальная (симметрия относительно плоскости) радиальная (или поворотная), переносная и другие. Я рассмотрю сегодня 5 видов симметрии.

    Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если они лежат на прямой, проходящей через т О и находятся по разные стороны от неё на одинаковом расстоянии. Точка О называется центром симметрии.

Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры, говорят, что фигура обладает центральной симметрией.

Примерами фигур, обладающими центральной симметрией является окружность и параллелограмм.

Фигуры, изображённые на слайде симметричны, относительно некоторой точки

2. Осевая симметрия

Две точки X и Y называются симметричными относительно прямой t , если эта прямая проходит чрез середину отрезка ХУ и перпендикулярна к нему. Также следует сказать, что каждая точка прямой t считается симметричной сама себе.

Прямая t – ось симметрии.

Фигура называется симметричной относительно прямой t , если для каждой точки фигуры симметричная ей точка относительно прямой t также принадлежит этой фигуре.

Прямая t называется осью симметрии фигуры, говорят, что фигура обладает осевой симметрией.

Осевой симметрией обладают неразвёрнутый угол, равнобедренный и равносторонний треугольники, прямоугольник и ромб, буквы (смотри презентацию).

    Зеркальная симметрия (симметрия относительно плоскости)

Две точки Р 1 и Р называются симметричными относительно плоскости а если они лежат на прямой, перпендикулярной плоскости а, и находятся от неё на одинаковом расстоянии

Зеркальная симметрия хорошо знакома каждому человеку. Она связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура зеркально симметрична другой.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. В пространстве бесчисленное множество плоскостей симметрии имеет шар.

Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым основанием, шар.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична.

4. П оворотная симметрия (или радиальная симметрия)

Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/ n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n -го порядка.

При п=2 все точки фигуры поворачиваются на угол 180 0 ( 360 0 /2 = 180 0 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

На рисунке 2 показана ось третьего порядка, на рисунке 3 – 4 порядка, на рисунке 4 - 5-го порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Для описания симметрии конкретного объекта надо указать все поворотные оси и их порядок, а также все плоскости симметрии.

Рассмотрим, например, геометрическое тело, составленное из двух одинаковых правильных четырехугольных пирамид.

Оно имеет одну поворотную ось 4-го порядка (ось АВ), четыре поворотные оси 2-го порядка (оси СЕ, DF , MP , NQ ), пять плоскостей симметрии (плоскости CDEF , AFBD , ACBE , AMBP , ANBQ ).

5 . Переносная симметрия

Ещё одним видом симметрии является переносная с имметрия.

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние «а» либо расстояние, кратное этой величине, она совмещается сама с собой Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние «а» - элементарным переносом, периодом или шагом симметрии.

а

Периодически повторяющийся рисунок на длинной ленте называется бордюром. На практике бордюры встречаются в различных видах (настенная роспись, чугунное литье, гипсовые барельефы или керамика). Бордюры применяют маляры и художники при оформлении комнаты. Для выполнения этих орнаментов изготавливают трафарет. Передвигаем трафарет, переворачивая или не переворачивая его, обводим контур, повторяя рисунок, и получается орнамент (наглядная демонстрация).

Бордюр легко построить с помощью трафарета (исходного элемента), сдвигая или переворачивая его и повторяя рисунок. На рисунке изображены трафареты пяти видов: а ) несимметричный; б, в ) имеющие одну ось симметрии: горизонтальную или вертикальную; г ) центрально-симметричный; д ) имеющий две оси симметрии: вертикальную и горизонтальную.

Для построения бордюров используют следующие преобразования:

а ) параллельный перенос; б ) симметрию относительно вертикальной оси; в ) центральную симметрию; г ) симметрию относительно горизонтальной оси.

Аналогично можно построить розетки. Для этого круг делят на n равных секторов, в одном из них выполняют образец рисунка и затем последовательно повторяют последний в остальных частях круга, поворачивая рисунок каждый раз на угол 360°/ n .

Наглядным примером применения осевой и переносной симметрии может служить забор, изображённый на фотографии.

Вывод: Таким образом, существуют различные виды симметрии, симметричные точки в каждом из этих видов симметрии строятся по определённым законам. В жизни мы повсюду встречаемся тем или иным видом симметрии, а часто у предметов, которые нас окружают, можно отметить сразу несколько видов симметрии. Это создаёт порядок, красоту и совершенство в окружающем нас мире.

ЛИТЕРАТУРА:

    Справочник по элементарной математике. М.Я. Выгодский. – Издательство « Наука». – Москва 1971г. – 416стр.

    Современный словарь иностранных слов. - М.: Русский язык, 1993г .

    История математики в школе IX - X классы. Г.И. Глейзер. – Издательство «Просвещение». – Москва 1983г. – 351стр.

    Наглядная геометрия 5 – 6 классы. И.Ф. Шарыгин, Л.Н. Ерганжиева. – Издательство «Дрофа», Москва 2005г. – 189стр.

    Энциклопедия для детей. Биология. С. Исмаилова. – Издательство «Аванта+». – Москва 1997г. – 704стр.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль arxitekt / arhkomp 2. htm , , ru.wikipedia.org/wiki/

«Симметрия » - слово греческого происхождения. Оно означает соразмерность, наличие определенного порядка, закономерности в расположении частей.

Люди с давних времен использовали симметрию в рисунках, орнаментах, предметах быта.
Симметрия широко распространена в природе. Её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, мозаике в храме, морской звезде.
Симметрия широко используется на практике, в строительстве и технике. Это строгая симметрия в форме античных зданий, гармоничные древнегреческие вазы, здании Кремля, машинах, самолетах и многом другом. (слайд 4) Примерами использования симметрии являются паркет и бордюр. (смотри гиперссылку об использовании симметрии в бордюрах и паркетах) Рассмотрим несколько примеров, где можно увидеть симметрию в различных предметах, с использованием слайд-шоу (включить значок).

Определение: – это симметрия относительно точки.
Определение: Точки А и В симметричны относительно некоторой точки О, если точка О является серединой отрезка АВ.
Определение: Точка О называется центром симметрии фигуры, а фигура называется центрально-симметричной.
Свойство: Фигуры, симметричные относительно некоторой точки, равны.
Примеры:

Алгоритм построения центрально-симметричной фигуры
1.Построим треугольник А 1В 1 С 1, симметричный треугольнику АВС, относительно центра (точки) О. Для этого соединим точки А,В,С с центром О и продолжим эти отрезки;
2. Измерим отрезки АО, ВО, СО и отложим с другой стороны от точки О, равные им отрезки (АО=А 1 О 1, ВО=В 1 О 1, СО=С 1 О 1);

3. Соединим получившиеся точки отрезками А 1 В 1; А 1 С 1; В1 С 1.
Получили ∆А 1 В 1 С 1 симметричный ∆АВС.


– это симметрия относительно проведенной оси (прямой).
Определение: Точки А и В симметричны относительно некоторой прямой а, если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии.
Определение: Осью симметрии называется прямая при перегибании по которой «половинки» совпадут, а фигуру называют симметричной относительно некоторой оси.
Свойство: Две симметричные фигуры равны.
Примеры:

Алгоритм построения фигуры, симметричной относительно некоторой прямой
Построим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой а.
Для этого:
1. Проведем из вершин треугольника АВС прямые, перпендикулярные прямой а и продолжим их дальше.
2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.
3. Соединим получившиеся точки отрезками А1В1, В1С1, В1С1.

Получили ∆ А1В1С1 симметричный ∆АВС.

Похожие публикации