Интернет-журнал дачника. Сад и огород своими руками

Вычислить реакции балки на двух опорах. Расчетно-графическая работа. Определение опорных реакций балки. Порядок решения задач на определение реакций опор балок

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использо­вать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок

По способу приложения нагрузки делятся на

· сосредоточенные и

· распределенные.

Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной.

Часто нагрузка распределена по значительной площадке или ли­нии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределен­ную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

q - интенсивность на­грузки; I - длина стержня;

G = ql - равнодей­ствующая распределенной нагрузки.

Разновидности опор балочных систем (см. лекцию 1)

Балка - конструктивная деталь в виде прямого бруса, закреп­ленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной.

Жесткая заделка (защемление) (рис. 6.2)

Опора не допускает перемещений и поворотов. Заделку заменя­ют двумя составляющими силы Rax и и парой с моментом Mr.

Для определения этих неизвестных удобно использовать систему уравнений в виде

Каждое уравнение имеет одну неиз­вестную величину и решается без подста­новок.

Для контроля правильности решений используют дополни­тельное уравнение моментов относительно любой точки на балке, например

Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заме­нена двумя составляющими силы вдоль осей координат.

Балка на двух шарнирных опорах (рис. 6.5)



Не известны три силы, две из них - вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:

Составляются уравнения моментов относительно точек крепле­ния балки. Поскольку момент силы, проходящей через точку креп­ления, равен 0, в уравнении останется одна неизвестная сила.

Для контроля правильности решения используется дополни­тельное уравнение

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Примеры решения задач

Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.



Решение

2. В заделке может возникнуть реакция, представляемая двум: составляющими (R Ay ,R Ax ), и реактивный момент М A . Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

3. Используем систему уравнений:

Знаки полученных реакций (+), следовательно, направления ре­акций выбраны верно.

3. Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.



Решение

1. Левая опора (точка А) - подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.

Правая опора (точка В) - неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.

2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецеле­сообразно.

3. Заменяем распределенную нагрузку сосредоточенной:

G = ql; G = 2*6 = 12 кН.

Сосредоточенную силу помещаем в середине пролета, далее за­дача решается с сосредоточенными силами (рис. 6.8, б).

4. Наносим возможные реакции в опорах (направление произвольное).

5. Для решения выбираем уравнение равновесия в виде

6. Составляем уравнения моментов относительно точек крепления:

Реакция отрицательная, следовательно, R А y нужно направить н противоположную сторону.

7. Используя уравнение проекций, получим:

R Bx - горизонтальная реакция в опоре В.

Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.

8. Проверка правильности решения. Для этого используем чет­вертое уравнение равновесия

Подставим полученные значения реакций. Если условие выполнено, решение верно:

5,1 - 12 + 34,6 – 25 -0,7 = 0.

Пример 3. Опреде­лить опорные реакции балки, показанной на рис. 1.17, а .

Решение

Рассмотрим рав­новесие балки АВ. Отбросим опорное закрепление (задел­ку) и заменим его действие реакциями Н А, V A и т А (рис. 1.17, б ). Получили плоскую систему произвольно распо­ложенных сил.

Выбираем систему координат (рис. 1.17,6) и состав­ляем уравнения равновесия:

Составим проверочное уравнение

следовательно, реакции определены верно.

Пример 4. Для заданной балки (рис. 1.18, а ) определить опорные реакции.

Решение

Рассматриваем равновесие балки АВ. Отбра­сываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему про­извольно расположенных сил.


Выбираем систему координат (см. рис. 1.18,6) и со­ставляем уравнения равновесия:

q 1 ,

Расстояние от точки А q 1 (а + b);

Равнодействующая равномерно распреде­ленной нагрузки интенсивностью q 2 ;

Расстояние от точки А до линии действия равнодействующей q 2 (d - с).

Подставив числовые значения, получим

откуда V B = 28,8 кН;

- расстояние от точки В до линии действия равнодействующей q 1 (a+b);

- расстояние от точки В до линии действия равнодействующей q 2 (d - c).

откуда V A = 81,2 кН.

Составляем проверочное уравнение:

Пример 5. Для заданной стержневой системы (рис. 1.19, а ) определить усилия в стержнях.

Решение

Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.

На балку действуют равномерно распределенная на­грузка интенсивностью q, сила Р и сосредоточенный мо­мент т .

Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б ). Получили плоскую систему про­извольно расположенных сил.

Выбираем систему координат (см. рис. 1.19, б ) и со­ставляем уравнения равновесия:

Где q (a + b) - равнодействующая

равномерно распреде­ленной нагрузки интенсивностью q (на чертеже она показана штриховой ли­нией).

Подставив числовые значения, получим:

откуда N AC = 16 кН;

Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;

где N BD cos α N BD ", N BF cos β - вертикальная составляющая силы N BF (линии действия горизонтальных состав­ляющих сил N BD и N BF проходят через точку А и поэтому их моменты относи­тельно точки А равны нулю). Подставляя числовые значения и учитывая, что N BD = 1,41 N BF , получаем:

откуда N BF = 33,1 кН.

Тогда N BD = 1,41*33,1 = 46,7 кН.

Для определения усилий в стержнях не было исполь­зовано уравнение равновесия: ΣP to = 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, усилия в стержнях определены верно.

Пример 6. Для заданной плоской рамы (рис. 1.20, а ) определить опорные реакции

Решение

Освобождаем раму от связей и заменяем их действие реакциями N А, V A , V B (рис. 1.20, б ). Получили плоскую систему произвольно расположенных сил.


Выбираем систему координат (см. рис. 1.20, б ) и составляем уравнения равновесия:

где Р 2 cos α - вертикальная составляющая силы Р 2 ;

P 2 sin α - горизонтальная составляющая силы Р 2 ;

2qa - равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);

откуда V B = 5,27qa;

откуда H A =7qa

линия действия силы Р 2 cosα проходит через точку В и поэтому ее момент относительно точки В равен нулю

откуда V A = 7qa.

Для определения реакций не было использовано урав­нение равновесия ΣP iv =0. Если реакции определены верно, то сумма проекций на ось v всех сил, действую­щих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, опорные реакции определены верно.

Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.

Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и опре­делите расстояние от точки приложения равнодействующей до опо­ры А (рис. 6.9).

2. Рассчитайте величину суммарного момента сил системы от­носительно точки А (рис. 6.10).

3. Какую из форм уравнений равновесия целесообразно исполь­зовать при определении реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?


5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СТАТИКЕ

Пример 1. Определить реакции опор горизонтальной балки от заданной нагрузки.

Дано:

Схема балки (рис. 1).

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

___________________________________

А и В .

Рис. 1

Решение:

Рассмотрим равновесие балки АВ (рис. 2).

К балке приложена уравновешенная система сил, состоящая из активных сил и сил реакции.

Активные (заданные) силы:

Пара сил с моментом М , где

Сосредоточенная сила, заменяющая действие распределенной вдоль отрезка АС нагрузки интенсивностью q .

Величина

Линия действия силы проходит через середину отрезка АС .

Силы реакции (неизвестные силы):

Заменяет действие отброшенного подвижного шарнира (опора А ).

Реакция перпендикулярна поверхности, на которую опираются катки подвижного шарнира.

Заменяют действие отброшенного неподвижного шарнира (опора В ).

Составляющие реакции , направление которой заранее неизвестно.

Расчетная схема

Рис. 2

Для полученной плоской произвольной системы сил можно составить три уравнения равновесия:

Задача является статически определимой, так как число неизвестных сил (,,) - три- равно числу уравнений равновесия.

Поместим систему координат XY в точку А , ось AX направим вдоль балки. За центр моментов всех сил выберем точку В .

Составим уравнения равновесия:

Решая систему уравнений, найдем ,,.

Определив,, найдем величину силы реакции неподвижного шарнира

В целях проверки составим уравнение

Если в результате подстановки в правую часть этого равенства данных задачи и найденных сил реакций получим нуль, то задача решена - верно.

Реакции найдены верно. Неточность объясняется округлением при вычислении .

Ответ:

Пример 2. Для заданной плоской рамы определить реакции опор.

Дано:

Схема рамы рис.3

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

______________________________

Определить реакции опор рамы.

Рис. 3

Решение:

Рассмотрим равновесие жесткой рамы АВЕС (рис. 4).

Расчетная схема

Рис. 4

Система сил приложенных к раме состоит из активных сил и сил реакций.

Активные силы:

Пара сил с моментом , , .

, заменяют действие распределенной нагрузки на отрезках ВД и ДЕ .

Линия действия силы проходит на расстоянии от точки В .

Линия действия силы проходит через середину отрезка ДЕ.

Силы реакции:

Заменяют действие жесткого защемления, которое ограничивает любое перемещение рамы в плоскости чертежа.

К раме приложена плоская произвольная система сил. Для нее можем составить три уравнения равновесия:

, ,

Задача является статистически определимой, так как число неизвестных тоже три - , , .

Составим уравнения равновесия, выбрав за центр моментов точку А, так как ее пересекают наибольшее число неизвестных сил.

Решая систему уравнений, найдем , , .

Для проверки полученных результатов составим уравнение моментов вокруг точки С.

Подставляя все значения, получим

Реакции найдены верно.

Ответ:

Пример 3 . Для заданной плоской рамы определить реакции опор.

Дано: вариант расчетной схемы (рис. 5);

Р 1 = 8 кН; Р 2 = 10 кН; q = 12 кН/м; М = 16 кНм; l = 0,1 м.

Определить реакции в опорах А и В .


Рис.5

Решение . Заменяем действие связей (опор) реакциями. Число, вид (сила или пара сил с моментом), а также направление реакций зависят от вида опор. В плоской статике для каждой опоры в отдельности можно проверить, какие направления движения запрещает телу данная опора. Проверяют два взаимно перпендикулярных смещения тела относительно опорной точки (А или В ) и поворот тела в плоскости действия внешних сил относительно этих точек. Если запрещено смещение, то будет реакция в виде силы по этому направлению, а если запрещен поворот, то будет реакция в виде пары сил с моментом (М А или М В).

Первоначально реакции можно выбирать в любую сторону. После определения значения реакции знак «плюс» у него будет говорить о том, что направление в эту сторону верное, а знак «минус» – о том, что правильное направление реакции противоположно выбранному (например, не вниз, а вверх для силы или по часовой стрелке, а не против неё для момента пары сил).

Исходя из вышесказанного, показаны реакции на рис. 5. В опоре А их две, т. к. опора запрещает перемещение по горизонтали и вертикали, а поворот вокруг точки А - разрешает. Момент М А не возникает, т. к. эта шарнирная опора не запрещает поворот телу вокруг точки А . В точке В одна реакция, т. к. запрещено перемещение только в одном направлении (вдоль невесомого рычага ВВ ¢ ).

заменяется эквивалентной сосредоточенной силой . Линия действия её проходит через центр тяжести эпюры (для прямоугольной эпюры центр тяжести на пересечении диагоналей, поэтому сила Q проходит через середину отрезка, на который действует q ). Величина силы Q равна площади эпюры, то есть

Затем необходимо выбрать оси координат x и y и разложить все силы и реакции не параллельные осям на составляющие параллельные им, используя правило параллелограмма. На рис.5 разложены силы , ,. При этом точка приложения результирующей и её составляющих должна быть одна и та же. Сами составляющие можно не обозначать, т. к. их модули легко выражаются через модуль результирующей и угол с одной из осей, который должен быть задан либо определен по другим заданным углам и показан на схеме. Например для силы Р 2 модуль горизонтальной составляющей равен , а вертикальной- .

Теперь можно составить три уравнения равновесия, а так как неизвестных реакций тоже три (,,), их значения легко находятся из этих уравнений. Знак у значения реакции, о чем говорилось выше, определяет правильность выбранных направлений реакций. Для схемы на рис. 5 уравнения проекций всех сил на оси х и y и уравнения моментов всех сил относительно точки А запишутся так:

Из первого уравнения находим значение R B , затем подставляем его со своим знаком в уравнения проекций и находим значения реакций Х А и У А.

В заключение отметим, что удобно уравнение моментов составлять относительно той точки, чтобы в нем оказалась одна неизвестная, т. е. чтобы эту точку пересекали две другие неизвестные реакции. Оси же удобно выбирать так, чтобы большее число сил оказались параллельны осям, что упрощает составление уравнений проекций.

Пример 4. Для заданной конструкции, состоящей из двух ломаных стержней, определить реакции опор и давление в промежуточном шарнире С .

Дано:

Схема конструкции (рис. 6).

P = 20 кН, G = 10 кН, М = 4 кНм, q = 2 кН/м, a =2 м, b =3 м, .

______________________________________

Определить реакции опор в точках А и В и давление в промежуточном шарнире С .

Рис. 6

Решение:

Рассмотрим равновесие всей конструкции (рис. 7).

К ней приложены:

активные силы ,, пара сил с моментом М , где

силы реакции:

, , , ,

Заменяют действие жесткого защемления;

Заменяет действие шарнирно-подвижной опоры А .

Расчетная схема

Рис. 7

Для полученной плоской произвольной системы сил можем составить три уравнения равновесия, а число неизвестных- четыре, , , .

Чтобы задача стала статически определимой, конструкцию расчленяем по внутренней связи - шарниру С и получаем еще две расчетные схемы (рис. 8, рис. 9).

Рис. 8Рис. 9

Заменяют действие тела АС на тело СВ , которое передается через шарнир С . Тело СВ передает свое действие на тело АС через тот же шарнир С , поэтому ; , .

Для трех расчетных схем в сумме можем составить девять уравнений равновесия, а число неизвестных – шесть , , , , , , то есть задача стала статически определима. Для решения задачи используем рис. 8, 9, а рис. 7 оставим для проверки.

Тело ВС (рис. 8)

Тело СА (рис. 9)

4)

5)

6)

Решаем систему шести уравнений с шестью неизвестными.

Проверка:

Реакции внешних опор в точках А и В найдены верно. Давление в шарнире С вычисляем по формуле

Ответ: , , , ,

Минусы означают, что направления инадо изменить на противоположные.

Пример 5. Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С .

Дано: = 9 кН; = 12 кН; = 26 кНм; = 4 кН/м.

Схема конструкции представлена на рис.10.

Рис.10

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.11). Составим уравнение моментов сил относительно точки B .

Рис.11

где кН.

После подстановки данных и вычислений уравнение (26) получает вид:

(2)

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 12):

Рис. 12

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (2) найдем значение :

Модуль реакции опоры А при шарнирном соединении в точке С равен:

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 13.

Рис. 13

Системы сил, показанные на рис. 12 и 13, ничем друг от друга не отличаются. Поэтому уравнение (2) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее скользящей заделки С (рис. 14).

Рис. 14

Составим уравнение равновесия:

и из уравнения (2) находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении ().

Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части

,

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН

Ответ: Результаты расчета приведены в таблице.

Момент, кНм

X A

Y A

R A

X C

X B

Y B

M C

Для схемы на рис.11

18,4

19,9

Для схемы на рис.13

14,36

11,09

17,35

28,8

28,8

12,0

17,2

Пример 6.

Дано: вариант расчетной схемы (рис.15).

Р 1 = 14 кН; Р 2 = 8 кН; q = 10 кн/м;М = 6 кНм; АВ = 0,5 м; ВС = 0,4 м; CD = 0,8 м; DE = 0,3 м; EF = 0,6 м.

Определить реакции в опорах А и F .

Решение . Используя рекомендации примера 3, расставляем реакции в опорах. Их получается четыре (, , , ). Так как в плоской статике для одного тела можно составить только три уравнения равновесия, то для определения реакций необходимо разбить конструкцию на отдельные твердые тела так, чтобы число уравнений и неизвестных совпало. В данном случае можно разбить на два тела АВС D и DEF . При этом в месте разбиения, т. е. в точке D для каждого из двух тел появляются дополнительные реакции, определяемые по виду, числу и направлению так же, как и для точек А и F . При этом по третьему закону Ньютона они равны по значению и противоположно направлены для каждого из тел. Поэтому их можно обозначить одинаковыми буквами (см. рис. 16).

Рис. 15

Далее, как и в примере 3, заменяем распределенную нагрузку q сосредоточенной силой и находим её модуль . Затем выбираем оси координат и раскладываем все силы на рис. 15 и 16 на составляющие параллельные осям. После этого составляем уравнения равновесия для каждого из тел. Всего их получается шесть и неизвестных реакций тоже шесть (, , , , , ), поэтому система уравнений имеет решение, и можно найти модули, а с учетом знака модуля и правильное направление этих реакций (см. пример 3).

Рис. 16. Разбиение конструкции на два тела в точке D , т. е. в месте их соединения скользящей заделкой (трение в ней не учитывается)

Целесообразно так выбирать последовательность составления уравнений, чтобы из каждого последующего можно было определить какую-то одну из искомых реакций. В нашем случае удобно начать с тела DEF , т. к. для него имеем меньше неизвестных. Первым составим уравнение проекций на ось х, из которого найдем R F . Далее составим уравнения проекций на оси у и найдем Y D , а затем уравнение моментов относительно точки F и определим M D . После этого переходим к телу ABCD . Для него первым можно составить уравнения моментов относительно точки А и найти М А, а затем последовательно из уравнений проекций на оси найти X A , Y A . Для второго тела необходимо учитывать свои реакции Y D , M D , взяв их из рис.16, но значения этих реакций уже будут известны из уравнений для первого тела.

При этом значения всех ранее определенных реакций подставляются в последующие уравнения со своим знаком. Таким образом, уравнения запишутся так:

для тела DEF

для тела ABCD

В некоторых вариантах задан коэффициент трения в какой-то точке, например . Это означает, что в этой точке необходимо учесть силу трения , где N A реакция плоскости в этой точке. При разбиении конструкции в точке, где учитывается сила трения, на каждое из двух тел действует своя сила трения и реакция плоскости (поверхности). Они попарно противоположно направлены и равны по значению (как и реакции на рис.16).

Реакция N всегда перпендикулярна плоскости возможного скольжения тел либо касательной к поверхностям в точке скольжения, если там нет плоскости. Сила трения же направлена вдоль этой касательной либо по плоскости против скорости возможного скольжения. Приведенная выше формула для силы трения справедлива для случая предельного равновесия, когда скольжение вот-вот начнется (при непредельном равновесии сила трения меньше этого значения, а определяется её величина из уравнений равновесия). Таким образом, в вариантах задания на предельное равновесие с учетом силы трения к уравнениям равновесия для одного из тел необходимо добавить еще одно уравнение . Там, где учитывается сопротивление качению и задан коэффициент сопротивления качения , добавляются уравнения равновесия колеса (рис.17).

При предельном равновесии

Рис.17

Из последних уравнений, зная G , , R , можно найти N , F тр, T для начала качения без проскальзывания.

В заключение отметим, что разбиение конструкции на отдельные тела проводят в том месте (точке), где имеет место наименьшее число реакций. Часто это невесомый трос или невесомый ненагруженный рычаг с шарнирами на концах, которые соединяют два тела (рис 18).

Рис. 18

Пример 7 . Жесткая рама ABCD (рис. 19) имеет в точке А неподвижную шарнирную опору, а в точке б - подвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны на рисунке.

Дано: F =25 кН, =60º , Р =18 кН, =75º , М= 50 кНм, = 30°, а= 0,5 м.

Определить: реакции в точках A и В , вызы­ваемое действующими нагрузками.

Рис. 19

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если составлять уравнение относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы F часто удобно разложить ее на составляющие F ’ и F ”, для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение. 1. Рассмотрим равновесие пластины. Проведем коорди­натные оси ху и изобразим действующие на пластину силы: силу , пару сил с моментом М, натяжение троса (по модулю T = Р) и реакции связей (реакцию неподвижной шарнирной опоры A изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).

2. Для полученной плоской системы сил составим три уравненияравновесия. При вычислении момента силы относительно точки A воспользуемся теоремой Вариньона, т.е. разложим силуна состав­ляющие F΄ , F ˝ (, ) и учтем, что по теореме Вариньона: Получим:

Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции.

Ответ: X = -8,5кН; Y = -23,3кН; R = 7,3кН. Знаки указывают, что силы X A и Y A направлены противоположно силам, показан­ным на рис. 19.

Пример 8. Жесткая рама А BCD (рис.20) имеет в т. А неподвижную шарнирную опору, а т. D прикреплена к невесомому стержню. В т. С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р =20 кН. На раму действует пара силс моментомМ = 75 кНм и две силы F 1 =10 кН и F 2 =20 кН, составляющие со стержнями рамы углы =30 0 и =60 0 соответственно. При определении размеров рамы принять a =0,2 м. Определить реакции связей в точках А и D , вызванные действием нагрузки.

Дано : Р =20 кН, М =75 кНм , F 1 =10 кН, F 2 =20 кН, =30 0 , =60 0 , =60 0 , a = 0,2 м.

Определить: Х А, У А, R D .


Рис. 20

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении следует учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы часто удобно разложить ее на составляющие и , для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение.

1.Рассмотрим равновесие рамы. Проведем координатные оси х, у и изобразим действующие на раму силы: силы и , пару сил с моментом М, натяжение троса (по модулю Т = Р) и реакции связей (реакцию неподвижной шарнирной опоры А представляем в виде составляющих; стержневая опора препятствует перемещению т. D рамы в направлении вдоль стержня,поэтомувтомженаправлениибудетдействоватьи реакция опоры ).

2. Составим уравнения равновесия рамы. Для равновесия произвольной плоской системы сил достаточно, чтобы сумма проекций всех сил на каждую из двух координатных осей и алгебраическая сумма моментов всех сил относительно любой точки на плоскости равнялись нулю.

При вычислении моментов сил и относительно точки А воспользуемся теоремой Вариньона, т.е. разложим силы на составляющие , ; , и учтем, что .

Получим:

Подставив в составленные уравнения числовые значения заданных величин, и решив эти уравнения, определим искомые реакции.

Из уравнения (3) определяем R D =172,68 кН.

Из уравнения (1) определяем Х А = -195,52 кН.

Из уравнения (2) определяем У А = -81,34 кН.

Знаки «- » при величинах Х А и У А означают, что истинное направление этих реакций противоположно указанному на рисунке.

Проведемпроверку.

т. к. , то реакции опор найдены правильно.

Ответ: Х А = -195,52 кН, У А = -81,34 кН , R D = 172,68 кН.

Пример 9. Конструкция (рис. 21) состоит из жесткого угольника и стержня, которые в точке С свободно опираются друг о друга. Внешними связями, наложенными на конструкцию, являются: в точке А – жесткая заделка, в точке В – шарнир. На конструкцию действуют: пара сил с моментом М =80 кН·м, равномерно распределенная нагрузка интенсивности q =10 кН/м и силы: =15 кН и =25кН. При определении размеров конструкции принять а =0,35 м. Определить реакции связей в точках А, В и С.

Дано: М =80 кН·м, q =10 кН/м, F 1 =15 кН, F 2 =25 кН, а =0,35 м.

Определить: R A , M A , R B , R C .

Указания. Задача – на равновесие системы тел, находящихся под действием плоской системы сил. При ее решении можно или рассмотреть сначала равновесие всей системы, а затем равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учтя при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, следует учесть, что ее реакция представляется силой, модуль и направление которой неизвестны, и парой сил, момент которой также неизвестен.

Решение.

в ыполняем его в соответствии с изложенной выше методикой.

1. В данной задаче изучается равновесие системы, состоящей из жесткого угольника и стержня.

2. Выбираем систему координат ХАУ (см. рис. 21).

3. Активными нагрузками на данную систему являются: распределенная нагрузка интенсивностью q , , и момент М.


Рис.21

Изобразим на чертеже предполагаемые реакции связей. Так как жесткая заделка (в сечении А ) препятствует перемещению этого сечения стержня вдоль направлений Х и У , а также повороту стержня вокруг точки А , то в данном сечении в результате действия заделки на стержень возникают реакции , , . Шарнирная опора в точке В препятствует перемещению данной точки стержня вдоль направлений Х и У . Следовательно, в точке В возникают реакции , и . В точке С опоры стержня на угольник возникают реакция действия угольника на стержень и реакция действия стержня на угольник. Эти реакции направлены перпендикулярно плоскости угольника, причем R C = R ¢ С (согласно закону о равенстве действия и противодействия).

1. Задачу решаем способом расчленения. Рассмотрим сначала равновесие стержня ВС (рис. 21, б ). На стержень действуют реакции связей , , , сила и момент. Для полученной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов внешних сил и реакций связей удобнее считать относительно точки В :

;;(1)

;; (2)

Из уравнения (3) получим: R c =132,38 кН.

Из уравнения (1) получим: Х В = -12,99 кН.

Из уравнения (2) получим: У В = -139,88 кН.

Реакция шарнира в точке В:

Теперь рассмотрим равновесие угольника СА (рис. 21, в ). На угольник действуют: реакции связей , сила q . Заметим, что R / C = R C =132,38 кН. Для данной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов сил будем считать относительно точки С:

;;(4)

Из уравнения (4) получим: Х А = 17,75 кН.

Из уравнения (5) получим: У А = -143,13 кН.

Из уравнения (6) получим: М А = -91,53 кНм.

Задача решена.

А теперь для наглядного доказательства того, какое значение имеет правильный выбор точки, относительно которой составляется уравнение моментов, найдем сумму моментов всех сил относительно точки А (рис. 21, в ):

Из этого уравнения легко определить М А:

М А = -91,53 кНм.

Конечно, уравнение (6) дало то же значение М А, что и уравнение (7), но уравнение (7) короче и в него не входят неизвестные реакции Х А и У А, следовательно, им пользоваться удобнее.

Ответ: R A =144,22 кН, M A = -91,53 кНм, R B =140,48 кН,R C =R ¢ C =132,38 кН.

Пример 10 . На угольник АВС (), конец А которого жестко заделан, в точке С опирается стержень DE (рис. 22, а ). Стержень имеет в точке D неподвижную шарнирную опору, и к нему приложена сила , а к угольнику - равномерно распределенная на участке q и пара с моментом М .

Рис. 22

Д а н о: F =10 кН,М =5 кНм,q = 20 кН/м,а =0,2 м.

О п р е д е л и т ь: реакции в точках А , С , D , вызванные заданными нагрузками.

Указания. Задача - на равновесие системы тел, находящихся под действием плоской системы сил. При её решении можно или рассмотреть сначала равновесие всей системы в целом, а затем - равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учитывая при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, учесть, что её реакция представляется силой, модуль и направление которой неизвестны , и парой сил, момент которой тоже неизвестен.

Решение. 1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня DE (рис. 22, б ). Проведем координатные оси XY и изобразим действующие на стержень силы: силу , реакцию , направленную перпендикулярно стержню и составляющие и реакции шарнира D . Для полученной плоской системы сил составляем три уравнения равновесия:

,;( 1)

Рассмотренный в § 2.7 свободный брус был нагружен заданными нагрузками (силами и моментами), находящимися в равновесии (см. рис. 3.7). Обычно заданные нагрузки не бывают взаимно уравновешенными; неподвижность конструкции под действием этих нагрузок обеспечивается благодаря наличию опор, соединяющих ее с основанием. В опорах возникают реакции, которые вместе с заданными нагрузками представляют уравновешенную систему внешних сил, действующих на конструкцию.

Как известно из курса теоретической механики, любое тело обладает в плоскости тремя степенями свободы. Поэтому для обеспечения геометрической неизменяемости системы (бруса) необходимо наложить на нее (в плоскости) три связи.

Рассмотрим различные типы опор плоских систем.

1. Защемление, или заделка (рис. 4.7, а). Защемленный (или заделанный) конец бруса не может ни смещаться поступательно, ни поворачиваться. Следовательно, число степеней свободы бруса с защемленным концом равно нулю. В опоре могут возникать: вертикальная реакция (сила R - рис. 4.7, а), препятствующая вертикальному смещению конца бруса; горизонтальная реакция (сила Н), исключающая возможность его горизонтального смещения и реактивный момент препятствующий повороту. Таким образом, закрепление бруса с помощью заделки накладывает на него три связи и обеспечивает его неподвижность.

2. Шарнирно неподвижная опора (рис. 4.7, б). Поперечное сечение бруса, проходящее через шарнирно неподвижную опору, не может смещаться поступательно. В опоре возникает реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила R, препятствующая вертикальному смещению, и горизонтальная сила Н, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью шарнирно неподвижной опоры, накладывает на него две связи.

3. Шарнирно подвижная опора (рис. 4.7, в). Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.

Рассмотренные типы опор принято также изображать с помощью стерженьков.

Шарнирно подвижную опору изображают в виде стерженька, имеющего по концам шарниры (рис. 5.7, а). Нижний шарнир неподвижен, а верхний может смещаться лишь по прямой линии, перпендикулярной к оси стерженька.


Это соответствует тем условиям закрепления, которые обеспечивает шарнирно подвижная опора (см. рис. 4.7, в). Опорная реакция действует только вдоль оси стерженька. Собственные деформации его при расчетах не учитываются, т. е. стерженек считается бесконечно жестким.

Шарнирно неподвижную опору изображают с помощью двух стерженьков с шарнирами по концам (рис. 5.7, б). Верхний шарнир является общим для обоих стерженьков. Направления стерженьков могут быть произвольными. Они, однако, не должны быть расположены на одной прямой.

Заделку (защемление) можно изображать с помощью трех стерженьков с шарнирами по концам, как показано на рис. 5.7, в.

Число стерженьков в схематическом изображении опоры равно числу составляющих опорной реакции и числу связей, накладываемых этой опорой на конструкцию.

Для того чтобы брус не перемещался под нагрузкой, он должен быть геометрически неизменяемо (неподвижно) соединен с основанием, что в случае плоского действия сил, как уже отмечалось, достигается путем наложения на него трех внешних связей.

Это можно сделать с помощью одной заделки (рис. 6.7, а) или одной шарнирно неподвижной и одной шарнирно подвижной опоры (рис. 6.7, б), или с помощью трех шарнирно подвижных опор, направления реакций которых не пересекаются в одной точке (рис. 6.7, в).

Если направления трех опорных стерженьков пересекаются в одной точке О (рис. 7.7, а,б), то система является мгновенно изменяемой, так как в этом случае ни один опорный стерженек не препятствует весьма малому повороту бруса вокруг точки О; такое расположение опорных стерженьков недопустимо.

Рассмотрим геометрически неизменяемые системы, состоящие из нескольких брусьев.

На рис. 8.7, а, например, показана система из двух брусьев (АВ и ВС), на каждый из которых наложено три связи. На брус ВС одну связь накладывает опорный стерженек CD, препятствующий вертикальному смещению точки С бруса, и две связи - шарнир В, препятствующий вертикальному и горизонтальному смещению точки В бруса.

На брус АВ все три связи налагает заделка А; шарнир же В не может препятствовать ни поступательным смещениям, ни поворотам бруса АВ и, следовательно, не налагает на него связей.

На рис. 8.7, б показана геометрически неизменяемая система, состоящая из трех брусьев (АС, CD и DF). На каждый из них наложено три связи. Так, например, шарнир С налагает на брус CD две связи (так как препятствует горизонтальному и вертикальному смещениям точки С), а шарнир - одну связь (так как препятствует только вертикальному смещению точки ).

Системы, изображенные на рис. 8.7, называются многопролетными шарнирными балками.

Общее число неизвестных опорных реакций при вариантах закрепления бруса, показанных на рис. 6.7, а, б, в, равно трем. Следовательно, эти реакции можно найти при помощи трех уравнений равновесия, которые составляются для плоской системы сил. По значениям же опорных реакций и внешних нагрузок можно определить [по формулам (2.7) - (4.7)] внутренние усилия в любом поперечном сечении бруса. Поэтому брус, закрепленный путем наложения на него трех связей, является не только геометрически неизменяемым, но и статически определимым. Наложение на него большего числа связей делает брус статически неопределимым, так как в этом случае все опорные реакции нельзя определить из одних лишь уравнений равновесия.

Уравнения равновесия, составляемые для определения опорных реакций, можно представить в трех различных вариантах:

1) в виде сумм проекций сил на две произвольные не параллельные друг другу оси и суммы моментов сил относительно любой точки плоскости МО);

2) в виде суммы проекций сил на произвольную ось и двух сумм моментов относительно любых точек плоскости, не лежащих на одном перпендикуляре к указанной оси проекций

3) в виде трех сумм моментов относительно любых точек плоскости, не лежащих на одной прямой

Выбор того или иного варианта составления уравнений равновесия, а также выбор точек и направлений осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не проводить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их значения рекомендуется подставить в какое-либо уравнение равновесия, не использованное ранее.

На многопролетную шарнирную балку, изображенную на рис. 8.7, а, наложено четыре внешние связи (три в сечении А и одна в сечении С), а на балку, изображенную на рис. 8.7, б, - пять внешних связей (две в сечении А и по одной в сечениях В, Е и F).

Однако если на каждый брус, составляющий многопролетную шарнирную балку, наложено по три связи, то эта балка статически определима и опорные реакции можно найти из уравнений статики.

Кроме трех уравнений равновесия всех сил, действующих на многопролетную шарнирную балку, составляются уравнения, выражающие равенство нулю моментов сил, приложенных по одну сторону от каждого шарнира (соединяющего отдельные части балки), относительно центра этого шарнира. Например, для балки, изображенной на рис. 8.7, а, кроме трех уравнений равновесия всех действующих на нее сил, составляется уравнение моментов левых (или правых) сил относительно шарнира , а для балки, изображенной на рис. 8.7,б, - относительно шарниров С и D.

Рассмотрим пример определения опорных реакций простой однопролетной балки, расчетная схема которой изображена на рис. 9.7, а. Отбросим опоры и заменим их влияние на балку опорными реакциями RA, Н и RB (рис. 9.7, б). Обычно балка с отброшенными опорами отдельно не изображается, а обозначения и направления опорных реакций указываются на расчетной схеме балки. Реакции представляют собой вертикальную и горизонтальную составляющие полной реакции шарнирно неподвижной опоры А; сила же является полной реакцией опоры В. Направления опорных реакций выбираются произвольно; если в результате расчета значение какой-либо реакции получается отрицательным, то, значит, в действительности ее направление противоположно предварительно принятому.

Аналогично составим сумму моментов всех сил относительно точки А:

Для проверки найденных значений опорных реакций составим сумму проекций всех сил на ось у.

Составленное уравнение удовлетворяется, что указывает на правильность определения опорных реакций.

Балками будем называть прямолинейные стержни, работающие на изгиб. В сопротивлении материалов термин «балка» значительно шире, чем в обычном употреблении этого слова: с точки зрения расчета на прочность, жесткость и устойчивость балкой является не только строительная балка, но также и вал, болт, ось железно­дорожного вагона, зуб шестерни и т. д.

Вначале ограничимся построением эпюр для простейшего случая изгиба балок, при котором все заданные нагрузки лежат в одной плоскости, называемой силовой (на рис. 4, а - плоскость П), при­чем эта плоскость совпадает с одной из главных плоскостей балки. Такой слу­чай будем называть плоским изгибом .

На расчетной схеме балку принято заменять ее осью (рис. 4, б). При этом все нагрузки, естественно, должны

Рис 4 быть приведены к оси балки и силовая плос­кость будет совпадать с плоскостью чер­тежа.

Как правило, балки имеют опорные устройства - опоры. Для расчета же их схематизи­руют в виде трех основных типов опор:

а) шарнирно-подвижная опора (рис. 5, а), в которой может возникать только одна составляющая реакции - , направленная вдоль опорного стерженька;

б) шарнирно-неподвижная опора (рис. 5, б), в которой могут возникать две составляющие - вертикальная реакция
и гори­зонтальная реакция

в) защемление (иначе жесткое защемление или заделка), где могут быть три составляющие - вертикальная
и горизонтальная
реакции и опорный момент Ма (рис. 5, в).

Все реакции и моменты считаются приложенными в точке А - центре тяжести опорного сечения.

Балка, показанная на рис. 6, с, называется простой , или однопролетной , или двухопорной , а расстояние l между опорами - пролетом .

Консолью называется балка, защемленная одним концом и не имеющая других опор (рис. 4, б), или часть балки, свешивающаяся за опоры (часть ВС на рис. 6, б; части АС и BD на рис. 6, е). Бан­ки, имеющие свешивающиеся части, называют консольными (рис. 6, б, в).

Для плоской системы сил можно составить три уравнения статики для определения неизвестных реакций.

Поэтому балка будет статически определимой, если число неизвестных опор­ных реакций не превышает трех; в противном случае балка стати­чески неопределима. Очевидно, что балки, изображенные на рис. 4 и 6, статически определимы.

Балка, изображенная на рис. 7, а , называется неразрезной и яв­ляется статически неопределимой, поскольку имеет пять неизвестных опорных реакций: три в опоре А и по одной в опорах В и С.

Поставив в сечениях балки шарниры, например в точках D и Е (рис. 7, б), получим статически определимую шарнирную балку, ибо каждый такой промежуточный шарнир к трем основным уравнениям статики прибавляет одно дополнительное уравнение: сумма моментов относительно центра шарнира от всех сил, расположен­ных по одну сторону от него, равна нулю .

Построение эпюр для статически неопределимых балок требует умения вычислять деформации, а поэтому ограничимся пока исклю­чительно статически определимыми балками.

Способы определения опорных реакций изучают в курсе теоре­тической механики. Поэтому здесь остановимся только на некоторых практических вопросах. Для этого рассмотрим простую балку (рис. 6, а).

1. Опоры обычно обозначают буквами А и В. Три неизвестные реакции находят из следующих уравнений равновесия:

а) сумма проекций всех сил на ось балки равна нулю:
откуда находят

б) сумма моментов всех сил относительно опорного шарнира А равна нулю:
откуда находят
.

в) сумма моментов всех сил относительно опорного шарнира В равна нулю:

откуда находят
.

2. Для контроля можно использовать или условие равенства нулю суммы проекций на вертикаль:

или условие равенства нулю суммы моментов относительно какой-либо точки С, отличной от А и В, т. е.

У

Условием
пользоваться проще, но оно дает надежную про­верку только в тех случаях, когда к балке не приложены сосредо­точенные моменты.

3. Перед составлением уравнений равновесия нужно выбрать (вообще говоря, произвольно) направления реакций и изобразить их на рисунке. Если в результате вычислений какая-либо реакция получается отрицательной, нужно изменить на рисунке ее направ­ление на обратное и в дальнейшем считать эту реакцию положи­тельной,

5. Если на балку действует распре деленная нагрузка, то для определения реакций ее заменяют равнодействующей, которая равна площади эпюры нагрузки и приложена в центре тя­жести этой эпюры.

Пример 5. Вычислить опорные реакции для балки, показанной на рис. 8.

Прежде всего находим равнодействующие Р 1 и Р 2 нагрузок, распределенных на участках АС н СВ:

;
.

Сила Р 1 приложена в центре тяжести прямоугольника, а Р 2 - в центре тяжести треугольника. Находим реакции:


3. Изгиб. Определение напряжений.

3.3. Определение опорных реакций.

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз , приложенной посредине участка aз :

Ay - F1 - qaз = 0,

Откуда

Ay = F1 + qaз .

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:

Откуда

Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).

Похожие публикации