Интернет-журнал дачника. Сад и огород своими руками

Расчет клиноременной передачи. Расчет оборотов шкивов Расчет оборотов ременной передачи онлайн

Классификация передач. В зависимости от формы поперечного сечения ремня передачи бывают: плоскоременные, клиноременные, круглоременные, поликлиноременные (рис. 69). Плоскоременные передачи по расположению бывают перекрестные и полуперекрестные (угловые), рис. 70. В современном машиностроении наибольшее применение имеют клиновые и поликлиновые ремни. Передача с круглым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

Разновидность ременной передачи является Зубчатоременная , передающая нагрузку путем зацепления ремня со шкивами.

Рис. 70. Виды плоскоременных передач: а – перекрестная, Б – полуперекрестная (угловая)

Назначение. Ременные передачи относится к механическим передачам трения с гибкой связью и применяют в случае если необходимо передать нагрузку между валами, которые расположены на значительных расстояниях и при отсутствии строгих требований к передаточному отношению. Ременная передача состоит из ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива преобразуется во вращение ведомого благодаря трению, развиваемому между ремнем и шкивами. По форме поперечного сечения различают Плоские , Клиновые , Поликлиновые и Круглые приводные ремни. Различают плоскоременные передачи - Открытые , которые осуществляют передачу между параллельными валами, вращающимися в одну сторону; Перекрестные, Которые осуществляют передачу между параллельными валамиПри вращении шкивов в противоположных направлениях; в Угловых (полуперекрестных) плоскоременных передачах шкивы расположены на скрещивающихся (обычно под прямым углом) валах. Для обеспечения трения между шкивом и ремнем создают натяжение ремней путем предварительного их упругого деформирования, путем перемещения одного из шкивов передачи или с помощью натяжного ролика (шкива).

Преимущества. Благодаря эластичности ремней передачи работают плавно, без ударов и бесшумно. Они предохраняют механизмы от перегрузки вследствие возможного проскальзывания ремней. Плоскоременные передачи применяют при больших межосевых расстояниях и, работающие при высоких скоростях ремня (до 100М/с ). При малых межосевых расстояниях, больших передаточных отношениях и передаче вращения от одного ведущего шкива к нескольким ведомым предпочтительнее клиноременные передачи. Малая стоимость передач. Простота монтажа и обслуживания.

Недостатки. Большие габариты передач. Изменение передаточного отношения из-за проскальзывания ремня. Повышенные нагрузки на опоры валов со шкивами. Необходимость устройств для натяжения ремней. Невысокая долговечность ремня.

Сферы применения. Плоскоременная передача проще, но клиноременная обладает повышенной тяговой способностью и вписывается в меньшие габариты.

Поликлиновые ремни - плоские ремни с продольными клиновыми выступами-ребрами на рабочей поверхности, входящими в клиновые канавки шкивов. Эти ремни сочетают достоинства плоских ремней - гибкость и клиновых - повышенную сцепляемость со шкивами.

Круглоременные передачи применяют в небольших машинах, например машинах швейной и пищевой промышленности, настольных станках, а также различных приборах.

По мощности ременные передачи применяются в различных машинах и агрегатах при 50КВ Т, (в некоторых передачах до 5000КВт ), при окружной скорости - 40М/с , (в некоторых передачах до 100М/с ), по передаточным числам 15, КПД передач: плоскоременные 0,93…0,98, а клиноременные – 0,87…0,96.

Рис. 71 Схема ременной передачи.

Силовой расчет. Окружная сила на ведущем шкиве

. (12.1)

Расчет ременных передач выполняют по расчетной окружной силе с учетом коэффициента динамической нагрузки И режима работы передачи:

Где - коэффициент динамической нагрузки, который принимается =1 при спокойной нагрузке, =1,1 – умеренные колебания нагрузки, =1.25 – значительные колебания нагрузки, =1,5 – ударные нагрузки.

Начальную силу натяжения ремня F O (предварительное натяжение) принимают такой, чтобы ремень мог сохранять это натяжение достаточно длительное время, не подвергаясь большой вытяжке и не теряя требуемой долговечности. Соответственно этому начальное напряжение в ремне для плоских стандартных ремней без автоматических натяжных устройств =1,8МПа ; с автоматическими натяжными устройствами = 2МПа ; для клиновых стандартных ремней =1,2...1,5МПа ; для полиамидных ремней = 3...4МПа .

Начальная сила натяжения ремня

Где А - Площадь поперечного сечения ремня плоскоременной передачи либо площадь поперечного сечения всех ремней клиноременной передачи.

Силы натяжения ведущей И ведомой S2 Ветвей ремня в нагруженной передаче можно определить из условия равновесия шкива (рис. 72).

Рис. 72. Схема к силовому расчету передачи.

Из условия равновесия ведущего шкива

(12.4)

С учетом (12.2) окружная сила на ведущем шкиве

Натяжение ведущей ветви

, (12.6)

Натяжение ведомой ветви

. (12.7)

Давление на вал ведущего шкива

. (12.8)

Зависимость между силами натяжения ведущей и ведомой ветвей приближенно определяют по формуле Эйлера, согласно которой натяжений концов гибкой, невесомой, нерастяжимой нити, охватывающей барабан связаны зависимостью

Где - коэффициент трения между ремнем и шкивом, - угол обхвата шкива.

Среднее значение коэффициента трения для чугунных и стальных шкивов можно принимать: для резинотканевых ремней =0,35, для кожаных ремней = 0,22 и для хлопчатобумажных и шерстяных ремней = 0,3.

При определении сил трения в клиноременной передаче в формулы вместо – коэффициента, трения надо подставлять приведенный коэффициент трения для клиновых ремней

, (12.10)

Где - угол клина ремня .

При совместном рассмотрении приведенных силовых соотношений для ремня получим окружную силу на ведущем шкиве

, (12.11)

Где - коэффициент тяги, который определяется по зависимости

Увеличение окружного усилия на ведущем шкиве можно достичь увеличением предварительного натяжения ремня либо повышением коэффициента тяги, который повышается с увеличением угла обхвата и коэффициента трения.

В таблицах со справочными данными по характеристикам ремней указаны их размеры с учетом необходимых коэффициентов тяги.

Геометрический расчет. Расчетная длина ремней при известном межосевом расстоянии и диаметрах шкивов (рис.71):

Где . Для конечных ремней длину окончательно согласовывают со стандартными длинами по ГОСТ. Для этого выполняют геометрический расчет согласно схемы показанной на рис.73.

Рис.73. Схема к геометрическому расчету ременной передачи

По окончательно установленной длине плоскоременной или клиноременной открытой передачи действительное межосевое расстояние передачи пои условии, что

Расчетные формулы без учета провисания и начальной деформации ремня.

Угол обхвата ведущего шкива ремнем в радианах:

, (12.14)

В градусах .

Порядок выполнения проектного расчета. Для ременной передачи при проектном расчете по заданным параметрам (мощность, момент, угловая, скорость и передаточное отношение) определяются размеры ремня и приводного шкива, которые обеспечивают необходимую усталостную прочность ремня и критический коэффициент тяги при максимальном КПД. По выбранному диаметру ведущего шкива из геометрического расчета определяются остальные размеры:

Проектный расчет плоскоременной передачи по тяговой способности производят по допускаемому полезному напряжению, Которое определяют по кривым скольжения. В результате расчета определяется ширина ремня по формуле:

, (12.15)

Где - окружная сила в передаче; - допустимая удельная окружная сила, которая соответствует максимальному коэффициенту тяги, которая определяется при скорости ремня =10 м/с и угле обхвата =1800; - коэффициент расположения передачи в зависимости от угла наклона линии центров к горизонтальной линии: =1,0, 0,9, 0,8 для углов наклона =0…600, 60…800, 80…900; - коэффициент угла обхвата шкива ; - скоростной коэффициент: ; - коэффициент режима работы, который принимается: =1,0 спокойная нагрузка; =0,9 нагрузка с небольшими изменениями, =0,8 – нагрузка с большими колебаниями, =0,7 – ударные нагрузки.

Для расчета предварительно по эмпирическим формулам определяется диаметр ведущего шкива

, (12.16)

Где - передаваемая мощность в кВт, - частота вращения.

Диаметр ведущего шкива округляется до ближайшего стандартного.

Принимается тип ремня, по которому определяется допустимая удельная окружная сила по таблице 12.1.

Таблица 12.1

Параметры плоских приводных ремней

Расчетную ширину ремня округляют до ближайшей стандартной ширины по табл.12.2.

Таблица 12.2 Стандартная ширина плоских приводных ремней

20, 25,32, 40, 50, 63, 71, 80, 90, 110, 112, 125, 140, 160, 180, 200, 224, 250, 280…

30, 60, 70, 115, 300…

Таблица 12.3 Ширина обода шкива плоскоременной передачи.

Проектный расчет клиноременной передачи по тяговой способности производят по допускаемой мощности передаваемой одним ремнем выбранного поперечного сечения, которое также определяют по кривым скольжения. В результате расчета определяется количество ремней выбранного сечения по формуле:

, (12.17)

Где - допускаемая мощность, передаваемой одним поперечного сечения; - коэффициент угла обхвата шкива: ; - коэффициент длины ремня: ; - коэффициент, который учитывает неравномерность нагружения между ремнями .

Для расчета по формуле (12.17) предварительно по эмпирическим зависимостям определяется тип поперечного сечения ремня (рис.74), а по нему предварительно принимается диаметр ведущего шкива по передаваемой мощности и частоте вращения, согласно таблице 12.3.

Таблица 12.4

Мощность N 0, которая передается одним клиновым ремнем при α =180o, длине ремня 0 спокойном нагружении и передаточном отношении U = 1

d 1, мм

Р0 (кВт) при скорости ремня υ, м/с

l 0=1320мм

l 0=1700мм

l 0=2240мм

l 0=3750мм

l 0=6000мм

Перевод системы обозначений сечений клиновых ремней по ГОСТ 1284 в международные стандарты: О – Z, А – A, Б – B, В – C, Г – D, Д – E, Е – E0

Межосевое расстояние может быть задано в исходных данных, либо приниматься в диапазоне

,

Где - высота, выбранного сечения ремня.

В результате геометрического расчета передачи уточняются значения параметров определяются расчетная длина ремня , которая округляется до ближайшего стандартного значения, согласно таблице 12.5.Таблица 12.5

Стандартная длина клиновых ремней

Длина , мм

Сечение ремня

400; 425; 450; 475; 500; 530

*

560; 600; 630; 670; 710; 750

* *

800; 850; 900; 950; 1000; 1060

* * *

1120; 1180; 1250; 1320; 1400; 1500; 1600; 1700; 1800; 1900; 2000; 2120; 2240; 2360;2500

* * * *

2650; 2800; 3000; 3150; 3350; 3550; 3750; 4000

* * *

4250; 4500; 4750; 5000; 5300; 5600; 6000

* *

6300; 6700; 7100; 7500; 8000; 8500; 9000; 9500; 10000; 10600

*

Расчетное число клиновых ремней округляют до ближайшего большего целого числа.

Проверочный расчет на долговечность. Долговечность ремня определяется его сопротивлением усталости при циклическом нагружении. Сопротивление усталости определяется числом циклов нагружений, которое возрастает с увеличением при скорости ремня и уменьшении его длины. Для обеспечения долговечности ремня в пределах 1000…5000 часов работы проверяется число пробегов ремня в секунду, которое соответствует числу нагружений в секунду

Таблица 12.7

Таблица 12.7

Размеры и параметры клиновых ремней

Обозначение

сечения, мм

F , мм2

Нормального сечения

08-10-2011(давно)

Задача:
Пылевой вентилятор №6, №7, №8
Двигатель 11кВт, 15кВт, 18кВт.
Количество оборотов на двигателе — 1500 об/мин.

Шкивов НЕТ ни на вентиляторе ни на двигателе.
Есть ТОКАРЬ и ЖЕЛЕЗО.
Какие размеры шкивов надо выточить токарю?
Какие обороты должны быть на вентиляторах?
СПАСИБО

08-10-2011(давно)

Посмотрите по справочникам, в интернете, там данные должны быть. Зачем изобретать велосипед, всё посчитано до нас.

08-10-2011(давно)

шкив

поставте на вентилятор шкив 240 а на двигатель 140-150,2 или 3 ручья профиля с.на улитке будет 900-1000 оборотов если на двигатели 1500.на большие вентиляторы большую частоту не ставят из-за вибраций.у меня так.

08-10-2011(давно)

могу посчитать шкивы

08-10-2011(давно)

Задачка то в принципе детская)

08-10-2011(давно)

элементарно

Если скорость нужна как на двиг. то 1:1, если в полтора раза больше то 1:1.5 и т.д. во сколько надо скорость увеличить во столько и разницу в диаметрах делай.

08-10-2011(давно)

Не всё так просто

есть зависимость от профиля ремня
если профиль ремня "Б", то шкив должен быть от 125мм и более, а угол канавки от 34град (до 40град при диаметре шкива 280мм).

09-10-2011(давно)

шкивы

шкивы посчитать не трудно.переведите угловую скорость в линейную через длину окружности.если есть шкив на двигателе посчитайте длину его окружности,т.е диаметр умножте на число пи,которое равно 3,14,получите длину окружности шкива.допустим на двигателе 3000 оборотов в минуту,умножте 3000 на полученную длину окружности,эта величина показывает какое расстояние пробегает ремень за минуту работы,она постоянная,а теперь ее разделите на требуемое количество оборотов рабочего вала и на 3,14,получите диаметр шкива на валу.это решение простого уравнения d1*п*n1=d2*п*n2/короче объяснил как мог.надеюсь поймете.

09-10-2011(давно)

Пылевого вентилятора № 7 не встречал.
На№8 три ремня профиль В(С).
Ведомый шкив диаметр-250мм.
Ведущий подбирайте под 18 квт
В каталогах на вентиляторы
есть данные (мощность,обороты вентилятора)

09-10-2011(давно)

Всем спасибо.

03-08-2012(давно)

спасибо большое.помогло в выборе шкива на чёску.

28-01-2016(давно)

расчет диаметра шкива

спасибо виктору…я так понимаю…если у меня на двигателе 3600 об.мин…то…на насосе нш-10 мне надо максимум 2400 об.мин …из этого исхожу что…на двигателе шкив 100мм…а на насосе 150мм…или 135мм??? в общем грубо с погрешносями надеюсь где то так…

29-01-2016(давно)

Если уж совсем приближенно к истине производить выбор, то лучше воспользоваться вот этими рекомендациями
http://pnu.edu.ru/media/filer_public/2012/12/25/mu-raschetklinorem.pdf

29-01-2016(давно)

Сереге:

3600:2400=1.5
Это ваше передаточное число. Оно обозначает отношение диаметров ваших шкивов на двигателе и на насосе. Т.е. если на двигателе шкив 100, то на насосе должен быть 150 , тогда и будет 2400 оборотов. Но тут вопрос другой: а не много ли оборотов для НШ?

Время везде иркутское (мск+5).

Увеличение диаметра шкива способствует повышению долговечности ремня.
Натяжной ролик.| Натяжные устройства.| Проверка отсутствия перелома в стыке разъемного шкива. Увеличение диаметра шкива возможно лишь в определенных пределах, обусловливаемых передаточным числом передачи, габаритами и весом машины.
Коэфициент ср растет с увеличением диаметра шкивов и окружной скорости, а также при употреблении чистых и хорошо пропитанных жиром ремней при их работе по гладким обходам шкивов, и, наоборот, падает при загрязненных ремнях и при работе по шероховатым шкивам.
По экспериментальным данным с увеличением диаметра шкива коэффициент трения увеличивается.
По экспериментальным данным с увеличением диаметра шкива, коэффициент трения увеличивается.
ЮОн-150, что не влечет за собой увеличение диаметров шкивов.
Как можно видеть из предыдущего, с увеличением диаметра шкива уменьшается напряжение изгиба, что благоприятно сказывается на увеличении долговечности ремня. Одновременно снижается удельное давление и увеличивается коэффициент трения, вследствие чего растет тяговая способность ремня.
С увеличением предварительного натяжения при одной и той же относительной нагрузке скольжение несколько возрастает и с увеличением диаметра шкива уменьшается. При работе с пониженной нагрузкой скольжение падает.
С увеличением предварительного натяжения при одной и той же относительной нагрузке скольжение несколько возрастает и d увеличением диаметра шкива уменьшается.
С увеличением предварительного натяжения при одной и той же относительной нагрузке скольжение несколько возрастает и с увеличением диаметра шкива уменьшается.
Наиболее простым способом повышения производительности компрессоров является увеличение числа их оборотов, что при ременной передаче достигается увеличением диаметра шкива электродвигателя. Так например, компрессор типа I первоначально был рассчитан на 100 об / мин. Однако в процессе эксплуатации этих компрессоров было установлено, что число оборотов может быть увеличено до 150 в минуту без нарушения условий безопасной работы.
Формула (87) показывает, что для ремней с одним диаметром каната натяжение, зависящее от сопротивления изгибу, уменьшается с увеличением диаметра шкива.
Практика последних лет свидетельствует о целесообразности: применения больших соотношений между диаметром шкива и каната (Dm / d до 48); увеличения диаметра шкивов; использования более прочных канатов большого диаметра.

Исследование передачи со шкивами без кольцевых канавок: при скорости выше 50 м / с показало, что тяговая способность ее снижается, несмотря на увеличение диаметра шкивов. Последнее объясняется появлением воздушных подушек в местах набегания ремня на шкивы, которые вызывают уменьшение углов обхвата ремня и тем больше, чем выше его скорость. В наибольшей степени это проявляется на ведомом шкиве, поскольку ведомая ветвь ремня ослаблена, что способствует проникновению воздушной подушки в зону контакта ремня со шкивом и вызывает его проскальзывание.
Диаметр шкивов талевой системы должен быть в 38 — 42 раза больше диаметра каната. Увеличение диаметров шкивов способствует снижению потерь на трение и улучшению условий работы каната.
Ременные передачи. Для ременных передач (рис. 47) требуются круглые, плоские и клиновидные ремни. При увеличении диаметра шкива ведущего вала увеличивается число оборотов ведомого вала, и, наоборот, если диаметр шкива ведущего вала уменьшить, то число оборотов ведомого вала также уменьшится.
Техническая характеристика талевых блоков. Шкивы кронблоков и талевых блоков имеют одинаковую конструкцию и размеры. Диаметр шкива, профиль и размеры канавки существенно влияют на срок службы и расход талевых канатов. Усталостная долговечность каната возрастает с увеличением диаметра шкивов, так как при этом уменьшаются, повторно-переменные напряжения, возникающие в канате при огибании шкивов. В буровых установках диаметры шкивов ограничиваются габаритами вышки и удобством работ, связанных с выносом свечей на подсвечник.
Диаметр шкива передачи является одним из наиболее важных параметров эксплуатации ремня. В таблицах передаваемых ремнями мощностей для обеспечения заданной надежности передач указывается величина мощности в зависимости от меньшего диаметра шкива передачи. Вначале коэффициент тяги резко возрастает с увеличением диаметра шкива, затем после достижения определенного значения диаметра шкива коэффициент тяги практически не изменяется. Таким образом, дальнейшее увеличение диаметра шкива нецелесообразно.
Циклически изменяющееся напряжение, возникающее в прямолинейном ленточном тяговом органе, во многом определяется величиной изгибного напряжения, которое появляется в ленте при перекатывании ее по шкивам и бобинам. Величина изгибного напряжения может быть уменьшена за счет толщины ленты или увеличения диаметра шкива. Однако толщина ленты имеет минимальный предел, а увеличение диаметра шкива нежелательно вследствие значительного возрастания веса органа навивки и общей стоимости подъемной установки.
Из рассмотрения табл. 30 и кривых скольжения видно следующее. Тяговые способности ремней сечения 50X22 мм существенно не отличаются, несмотря на различие материалов несущего слоя. Эти ремни дают высокую потерю скорости ведомого вала (до 3 5 % при d 200 — 204 мм, а0 0 7 МПа и ф 0 6), которая возрастает с повышением натяжения ремня и снижается с увеличением диаметров шкивов. Наибольшее значение т ] 0 92 имеют ремни с анидной кордтканью и лавсановым кордшнуром при d 240 — н250 мм.
НеобходимЬе предварительное натяжение канатов определяется в зависимости от их состояния: различают новый канат и канат, к-рый уже вытянулся под нагрузкой.

При работе передачи канаты постепенно удлиняются и провес их увеличивается. При этом уменьшение напряжения т, обусловленное предварительным натяжением каната, частично заменяется увеличением натяжения от увеличения веса провисающей части каната и в тем большей степени, чем значительнее провес каната. Более благоприятные условия для работы каната создаются путем увеличения диаметров шкивов и применения эластичных канатов. При устройстве передачи на расстояния 25 — 30 м устанавливают промежуточные шкивы (фиг. Применение опорных шкивов, как уже было сказано, ведет к понижению кпд передачи.

Сообщение

23-03-2016(давно)

Есть двигатель 1000 об/мин. какого диаметра шкивы нужно поставить на двигатель и вал чтоб на валу получилось 3000об/мин

24-03-2016(давно)

???

Большой крутит маленький — обороты растут у последнего и наоборот…
Передаточное число прямопропорционально отношению диаметров(т.е. шкив на моторе должен быть в три раза больше по диаметру, чем на шпинделе, в контексте Вашего вопроса)
Я так бы в детсаду рассказывал)))

Выше шутка!:)
1. Сколь мотор киловатт?
2. Сперва ищем ремня скорость, используя диаметр шкива на моторе: 3,14 х Д х 1000об/мин/60000, м/с
3. Берем справочник Анурьева(Виктора Ивановича) и смотрим таблицу, совмещая скорость ремня, диаметр меньшего шкива — найдем скока один ремень киловатт передает.
4. Смотрим на шильду мотора где кВт написано, делим на цифирь одним ремнем передаваемую — получаем ремней количество.
5. Точим шкивы.
6. Пилим древесину!!!)))

24-03-2016(давно)

не будет ничего пилить, мотор меняйте на 3000 об/мин. Разница дикая в диаметрах шкивов будет 560 / 190 мм.
Шкив 560 мм представляете??? он будет стоить как крыло самолета да и смысла нет его ставить.

29-03-2016(давно)

???

Артур — вопросы выше(чернИнькие) "за пилить"…
Ответ — да будет ОНО пилить-то, понятно, что с тобой согласен, что не нормально это обороты в три разА повышать!!!(сам автору сперва???-сы нарезал)…

Человечество свою деятельность в этом измерении уложило в 750; 1000; 1500; 3000 об/мин — выбирай КОНСТРУКТОР!!!

ПС Чем оборотистей мотор — тем он дешеМше и компактней)))…

31-03-2016(давно)

Правильно ли подсчитал

Двигатель 0.25 кв 2700 об шкив на двигателе 51мм передает на шкив 31мм и на круге 127 у меня получилось 27-28 м/с хочу заменить шкив 51мм на 71мм тогда у меня получается 38-39 м/с прав ли я?

31-03-2016(давно)

Ваша правда!!!

Но!!! — увеличив скорость заточки(резания) Вы снизите подачу на зерно и как следствие вырастет удельная работа резания, что потянет за собой рост мощности!

Движок надо помощнее будет, если запаса в имеющемся нет!

ПС Чудес не бывает(((, т.е.: "Ничего нельзя получить, ничего не отдав")))!!!

31-03-2016(давно)

"отдам 0.25кв за 0.75кв "))

Спасибо СВА. И еще вопрос что лучше оставить как есть или же сделать 38-39 м/с.

01-04-2016(давно)

За интервал:) в кВт — там(по памяти) между 0,25 и 0,75 еще 0,37 и 0,55 присутствуют)))

Короче — до повышения оборотов токи стрельнули(при 0,25 кВт — номинал 0,5 А грубо), повысили обороты, снова клещи в зубы и ток меряем.
Если в 0,5 А уложились — то "голову не ломаем" — крутим 40м/с камушек…

Ильяс — я так понимаю, точите ленту, охота шероховатость поверхности снизить во впадине зуба, правильно толкую?
Так возьмите камушек с зерном помельче и обороты не трогайте!!!, но токи при этом тоже, обязательно стрельните…

ПС Щас Сергей Анатольевич(Бобер 195) мою писанину прочитает — и всё растолкует и за камни и за м/с!!!)))

01-04-2016(давно)

Спасибо ещё раз СВА. Так и сделаю. Раньше был абразив переделал на полнопрофиль и подумал что обороты малы. Да и ещё двигатель подключён звездой нужно ли его на треугольник или оставить на звезде?

03-04-2016(давно)

Привет!

Звиняйте за задержку.
У Деда Мороза в гостях был.

Заодно проконтролировал его, как он там апосля праздников, жив, чи нет…

Так за зерно…
Верно то оно верно, чем меньше зерно, тем мельче царапины, однако… Сыпятся то они быстрее. Салятся и греются в результате, так как силов то касательных ух как растет сразу.
Значит зернистость оставляем, тем более, что производители нас этим не сильно балуют, но предпочитаю 250-ое зерно… Эт меня наши потребители научили. Я им выбор предложил, так они меня, скажем так, убедительно вразумили.
Ну а что касательно мощности двигателя…
Анатолич, ну скажи честно, как с тобой спорить?
Понятен перец, что мощность двигателя надо увеличивать.

Инструкция

1. Рассчитайте диаметр ведущего шкива по формуле: D1 = (510/610) · ??(p1·w1) (1), где:- p1 — мощность мотора, кВт; — w1 — угловая скорость ведущего вала, радианы в секунду. Величину мощности мотора возьмите из технической колляции в его паспорте. Как водится, там же указывается число циклов мотора в минуту.

2. Переведите число циклов мотора в минуту в радианы в секунду, умножив начальное число на показатель 0,1047. Подставьте обнаруженные числовые значения в формулу (1) и вычислите диаметр ведущего шкива (узла).

3. Вычислите диаметр ведомого шкива по формуле: D2= D1·u (2), где:- u — передаточное число;- D1 — рассчитанный по формуле (1) диаметр ведущего узла. Передаточное число определите делением угловой скорости ведущего шкива на нужную угловую скорость ведомого узла. И напротив, по заданному диаметру ведомого шкива дозволено рассчитать его угловую скорость. Для этого вычислите отношение диаметра ведомого шкива к диаметру ведущего, после этого поделите на это число величину угловой скорости ведущего узла.

4. Обнаружьте минимальное и наивысшее расстояние между осями обоих узлов по формулам: Аmin = D1+D2 (3), Аmax = 2,5·(D1+D2) (4), где:- Аmin — минимальное расстояние между осями;- Аmax — наивысшее расстояние;- D1 и D2 — диаметры ведущего и ведомого шкивов. Расстояние между осями узлов не должно быть больше 15 метров.

5. Рассчитайте длину ремня передачи по формуле: L = 2А+П/2·(D1+D2)+(D2-D1)?/4А (5), где:- А — расстояние между осями ведущего и ведомого узлов,- ? — число «пи», — D1 и D2 — диаметры ведущего и ведомого шкивов. При вычислении длины ремня прибавьте к получившемуся числу 10 — 30 см на его сшивку. Выходит, пользуясь приведенным формулами (1-5), вы легко сумеете рассчитать оптимальные величины узлов, составляющих плоскоременную передачу.

Современная жизнь проходит в непрерывном движении: машины, поезда, самолеты, все спешат, куда-то бегут, и зачастую бывает значимо рассчитать скорость этого движения. Для расчета скорости есть формула V=S/t, где V – это скорость, S – расстояние, t – время. Разглядим пример, дабы усвоить алгорифм действий.

Инструкция

1. Увлекательно узнать, с какой скоростью вы ходите? Выберите тропинку, метраж которой вы верно знаете (на стадионе, скажем). Засеките время и пройдите по ней в своем обыкновенном темпе. Так, если длина пути 500 метров (0,5 км), и вы прошли ее за 5 минут, значит поделите 500 на 5. Получается, что ваша скорость 100 м/мин.Если на велосипеде вы проехали ее за 3 минуты, значит, ваша скорость 167 м/мин.На машине за 1 минуту, значит скорость 500 м/мин.

2. Дабы перевести скорость из м/мин в м/сек, поделите скорость в м/мин на 60 (число секунд в минуте).Так, получается, что при ходьбе ваша скорость 100 м/мин / 60 = 1,67 м/сек.Велосипед: 167 м/мин / 60 = 2,78 м/сек.Машина: 500 м/мин / 60 = 8,33 м/сек.

3. Для перевода скорости из м/сек в км/ч – скорость в м/сек поделите на 1000 (число метров в 1 километре) и полученное число умножьте на 3600 (число секунд в 1 часе).Таким образом, получается, что скорость ходьбы составляет 1,67 м/сек / 1000*3600 = 6 км/ч.Велосипед: 2,78 м/сек / 1000*3600 = 10 км/ч.Машина: 8,33 м/сек / 1000*3600 = 30 км/ч.

4. Для облегчения процедуры перевода скорости из м/сек в км/ч используйте показатель 3,6, тот, что используется дальнейшим образом: скорость в м/сек*3,6=скорость в км/ч.Ходьба: 1,67 м/сек*3,6 = 6 км/ч.Велосипед: 2,78 м/сек*3,6 = 10 км/ч.Машина: 8,33 м/сек*3,6= 30 км/ч.Видимо, что значительно проще запомнить показатель 3,6, чем всю процедуру умножения-деления. В таком случае вы будете легко переводить скорость из одной величины в иную.

Видео по теме

". Остальные размеры шкива определяют следующим образом.

Для шкивов плоскоременных передач (см. рис. 1) диаметр d , ширину обода В и стрелу выпуклости y принимают по ГОСТ 17383-73 в зависимости от ширины b ремня. Толщину s обода у края шкивов принимают:
для чугунных шкивов

Для стальных свертных шкивов

Рис. 1

Для клиноременных шкивов размеры профиля канавок (рис. 2) с, е, t, s, b и φ регламентированы ГОСТ 20898-80 в зависимости от профиля сечения ремня. Пределы расчетных диаметров и числа канавок шкивов клиноременных передач стандартизованы ГОСТ 20889-80....20897-80 в зависимости от профиля сечения ремня и конструкции шкива. Ширина обода клиноременного шкива (рис. 2)

где z - число канавок. Толщину обода принимают в зависимости от конструкции.


Рис. 2

Наружный диаметр d′ и длина ступицы l c (см. рис. 1):

title="l_c=B/3+d_b>=1,5d_b">
где d - диаметр вала .

Число спиц

где d - диаметр шкива, мм. Если k c ≤3 , то шкив выполняют с диском, если k c >3 , то шкив делают со спицами, причем их число рекомендуется брать четным.

Спицы рассчитывают на изгиб от действия окружной силы F t условно считая их в виде консольных балок длиной d/2 заделанных в ступице по ее диаметральному сечению. Учитывая неравномерность распределения нагрузки между спицами и условность данного расчета спиц, можно считать, что окружная сила F t воспринимается всех спиц. Таким образом, требуемый момент сопротивления условного поперечного сечения спицы, проходящего через ось шкива,

или

Допускаемое напряжение на изгиб принимают:

  • для чугуна [σ i ]=30...45 МПа
  • для стали [σ i ]=60...100 МПа.

Рис. 3

В чугунных шкивах принимают толщину спиц в расчетном сечении (см. рис. 3)
где h - ширина спицы в расчетном сечении. Так как для эллипса

то из формул следует, что

откуда

Размеры различных составных шкивов, изготовляемых из фасонных частей, принимают по конструктивным и технологическим параметрам.

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

Вопрос господ Рабынина и Новикова, Нижегородская область.

Просим ответить, как правильно рассчитать диаметры шкивов , чтобы ножевой вал деревообрабатывающего станка вращался со скоростью 3000...3500 оборотов в минуту. Частота вращения электрического двигателя 1410 оборотов в минуту (двигатель трехфазный, но будет включен в однофазную сеть (220 В) с помощью системы конденсаторов. Ремень клиновой.

Сначала несколько слов о клиноременной передаче - одной из самых распространенных систем для передачи вращательного движения при помощи шкивов и приводного ремня (такую передачу используют в широких диапазонах нагрузок и скоростей). У нас выпускают приводные ремни двух типов - собственно приводные (по ГОСТ 1284) и для автотракторных двигателей (по ГОСТ 5813). Ремни того и другого типа несколько отличаются друг от друга по размерам. Характеристики некоторых ремней приведены в таблицах 1 и 2, поперечное сечение клинового ремня показано на рис. 1. Оба типа ремней имеют клиновидную форму с углом при вершине клина в 40° с допуском ± 1°. Минимальный диаметр меньшего шкива также указан в таблицах 1 и 2. Однако при выборе минимального диаметра шкива следует еще учитывать линейную скорость движения ремня, которая не должна превышать 25...30 м/с, а лучше (для большей долговечности ремня), чтобы эта скорость находилась в пределах 8... 12 м/с.

Примечание. Названия тех или иных параметров приведены в подрисуночных надписях к рис. 1.

Примечание. Название тех или иных параметров приведены в подрисуночных подписях к рис. 1.

Диаметр шкива, в зависимости от частоты вращения вала и линейной скорости шкива, определяют по формуле:

D1=19000*V/n,

где D1 - диаметр шкива, мм; V - линейная скорость шкива, м/с; n - частота вращения вала, об/мин.

Диаметр ведомого шкива вычисляют по следующей формуле:

D2 = D1x(1 - ε)/(n1/n2),

где D1 и D2 - диаметры ведущего и ведомого шкивов, мм; ε - коэффициент скольжения ремня, равный 0,007...0,02; n1 и n2 - частота вращения ведущего и ведомого валов, об/мин.

Так как значение коэффициента скольжения весьма мало, то поправку на скольжение можно и не учитывать, то есть вышестоящая формула приобретет более простой вид:

D2 = D1*(n1/n2)

Минимальное расстояние между осями шкивов (минимальное межцентровое расстояние) составляет:

Lmin = 0,5x(D1+D2)+3h,

где Lmin - минимальное межцентровое расстояние, мм; D1 и D2 - диаметры шкивов, мм; h - высота профиля ремня.

Чем меньше межцентровое расстояние, тем сильнее изгибается ремень при работе и тем меньше срок его службы. Целесообразно принимать межцентровое расстояние больше минимального значения Lmin, причем делают его тем больше, чем ближе значение передаточного отношения к единице. Но во избежание чрезмерной вибрации применять очень длинные ремни не следует. Кстати, максимальное межцентровое расстояние Lmax легко вычислить по формуле:

Lmax <= 2*(D1+D2).

Но в любом случае значение межцентрового расстояния L зависит от параметров используемого ремня:

L = А1+√(A1 2 - А2),

где L - расчетное межцентровое расстояние, мм; А1 и А2 - дополнительные величины, которые придется вычислять. Теперь разберемся с величинами А1 и А2. Зная диаметры обоих шкивов и стандартную длину выбранного ремня, определить значения А1 и А2 совсем несложно:

А1 = /4, а

А2 = [(D2 - D1) 2 ]/8,

где L - стандартная длина выбранного ремня, мм; D1 и D2 - диаметры шкивов, мм.

Размечая плиту для установки электродвигателя и приводимого во вращение устройства, например, круглой пилы, требуется предусмотреть возможность перемещения электродвигателя на плите. Дело в том, что расчет не дает абсолютно точного расстояния между осями двигателя и пилы. Кроме того, необходимо обеспечить возможность натяжения ремня и компенсировать его растяжение.

Конфигурация ручья шкива и его размеры приведены на рис. 2. Размеры, обозначенные на рисунке буквами, имеются в приложениях к соответствующим ГОСТам и в справочниках. Но если ГОСТов и справочников нет, все необходимые размеры ручья шкива можно примерно определить по размерам имеющегося клиновидного ремня (см. рис. 1), считая, что

е = с + h;

b = ацт+2c*tg(ф/2) = а;

s = а/2+(4...10).

Поскольку интересующий нас случай связан с ременной передачей, передаточное отношение которой не очень большое, на угол охвата ремнем меньшего шкива мы при расчете внимания не обращаем.

В качестве практических рекомендаций скажем, что материалом для шкивов может быть любой металл. Добавим также, что для получения максимальной мощности от трехфазного электродвигателя, включенного в однофазную сеть, емкости конденсаторов должны быть следующими:

Ср = 66Рн и Сп = 2Ср = 132Рн,

где Сп - емкость пускового конденсатора, мкФ; Ср - емкость рабочего конденсатора, мкФ; Рн - номинальная мощность двигателя, кВт.

Для клиноременной передачи немаловажным обстоятельством, сильно сказывающимся на долговечности ремня, является параллельность осей вращения шкивов.

Похожие публикации