Интернет-журнал дачника. Сад и огород своими руками

Срок годности солнечных батарей. Солнечные панели: срок службы и гарантии. Предполагаемые сроки службы

Были испытаны в полевых условиях на многих установках. Практика показала, что срок службы превышает 30 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет.

Солнечные модули обычно деградируют быстрее в первые 2 года эксплуатации. Тонкопленочные модули теряют от 10 до 30% мощности в первые 2 года эксплуатации, поэтому обычно новые они имеют запас мощности около 15-20%. Около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули, т.к. их деградация гораздо меньше, а срок службы - больше, чем у других типов солнечных модулей (см. таблицу ниже).

Как быстро солнечные панели деградируют/теряют свою эффективность?

Типичная деградация мощности солнечных панелей составляет 0.5% в год. Как указывалось выше, тонкопленочные солнечные панели (a-Si, CdTe и CIGS) деградируют быстрее, чем моно и поликристаллические панели. Ниже приведена таблица с данными по деградации солнечных панелей, произведенный до 2000 года и после 2000 года. :

Каков ожидаемый срок службы солнечных панелей?

Ниже приведен график типичной гарантии на выработку мощности солнечными панелями от различных производителей:

Как видим, большая часть производителей гарантирует работу солнечных модулей в течение 25 лет, при этом снижение мощности не будет превышать 20% к концу этого срока.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей через 10 лет снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Что будет с моими солнечными батареями после 25 лет эксплуатации?

Честно говоря, мы не знаем. До сих пор нет достаточных статистических данных по этому вопросу, т.к. фотоэнергетика - довольно молодая отрасль, и подавляющее большинство модулей, находящихся сейчас в эксплуатации. сделаны менее 10 лет назад. Однако, те данные, которые существуют, позволяют говорить о том, что солнечные батареи будут работать гораздо дольше обещанных производителями 25 лет:

  • Солнечная панель 33W (Arco Solar 16-2000) на самом деле имеет лучшие показатели, чем обещаны в ее спецификациях через 30 лет работы.
  • Первая в мире солнечная панель продолжает работать уже 60 лет.
  • Kyocera отчиталась о солнечных установках, которые продолжают успешно и надежно работать через 30 лет эксплуатации.

Максимальное ухудшение обычно гарантируется производителями на уровне не более 20% за 25 лет. Однако измерения, проведенные на реально работающих с 1980 годов модулей показывают, что их выработка уменьшилась не более, чем на 10%. Очень многие из этих модулей и до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

Современные технологии производства солнечных панелей существенно улучшены, и солнечные панели, которые продаются сейчас еще более надежны, стабильны и эффективны.

Все это означает, что если при расчетах окупаемости солнечных энергоустановок был принят срок службы солнечных панелей 20 лет, то далее они будут генерировать электрическую энергию бесплатно .

Мы уверены, что качественные солнечные панели будут работать генерировать электроэнергию и через 30 – 40 лет после установки.

Что можно сделать для увеличения срока службы солнечных панелей?

  • Избегайте физических повреждений панели (т.е. падения деревьев, веток, срыва ветром, царапин на модуле). Чем больше царапин на поверхности модуля, тем меньше его эффективность. В самом плохом варианте влага и вода может попасть между стеклом и защитной пленкой и привести к короткому замыканию и/или коррозии контактов солнечных элементов.
  • Регулярное обслуживание и чистка очень важны. См. Best Way to Clean Solar Panels .
  • Чем тяжелее климатические условия, в которых работают солнечные панели, тем быстрее они будут деградировать. Поэтому, в некоторых случаях имеет смысл устанавливать ветрозаграждающие конструкции.

Какой срок службы имеют другие компоненты солнечной энергосистемы?

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет (в среднем 4-10 лет), а силовая электроника - от 5 до 20 лет (в среднем 10-12 лет)

Продолжить чтение

    Как правильно выбирать солнечные элементы и модули В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах, стекле, защитной пленке и раме…

Срок службы солнечных панелей и их выработка зависит от многих факторов, среди которых климат, тип модуля и монтажной системы.

На солнечные панели даются две гарантии, два типа: 1) гарантия на продукт (от производственного брака), по-английски её называют product warranty и 2) гарантия на мощность (performance warranty).

Первый тип гарантии характерен для любого продукта/товара, который мы приобретаем. Это гарантия от поломки вследствие производственного брака. Для солнечных панелей он выше, чем стандартные сроки гарантии на многие другие товары. Обычный, наиболее распространённый срок гарантии от брака для солнечных модулей: 10-12 лет. Бывают исключения, например, американская SunPower дает 25-летнюю гарантию от поломок.

Наиболее распространенный срок performance warranty (гарантии на мощность) для солнечных панелей: 25 лет при сохранении 80% исходной мощности. Это не означает, что срок службы солнечной панели через 25 лет заканчивается. Нет, она может проработать и 40, и 50 лет, просто дальнейшая деградация модуля никак не описывается производителем и не связывается с какими-либо обязательствами с его стороны.

Иногда дают «ступенчатую» гарантию: 90% исходной мощности – первые 10 лет, 80% - еще пятнадцать. Более современной и распространённой сегодня является линейная гарантия. То есть гарантируется постепенная деградация оборудования (см. фото):

Долговечность – важный фактор экономики солнечной энергетики.

Чем дольше работает солнечная панель, тем больше электроэнергии она выработает за срок своей службы, тем дешевле получится каждый произведенный ей киловатт-час.

Поэтому производители стремятся увеличить срок службы модулей, и сегодня все чаще появляются примеры 30-летних гарантий на мощность.

Например, журнал PV-Europe сообщает, что немецкая компания Solarwatt дает на свои модули гарантию 30 лет с сохранением 87,5% исходной мощности. Более того, производственная гарантия расширена также на 30 лет (уникальный пример).

Если 30 лет для солнечных панелей станет стандартом, это повлечет влечет за собой корректировки в калькуляции стоимости производства энергии (LCOE). Сегодня для расчетов, как правило, берется срок службы объекта в 20 или 25 лет. Если 25 поменять на 30 лет, это приводит к снижению LCOE для объекта солнечной генерации на несколько процентов (до 10%).

Недавно американская лаборатория возобновляемых источников энергии NREL (подразделение министерства энергетики США) опубликовала любопытную информацию.

Срок службы солнечных панелей и их выработка зависит от многих факторов, среди которых климат, тип модуля и монтажной системы. Снижение выработки солнечного модуля с течением времени называется деградацией.

В соответствии с исследованием NREL, коэффициент деградации солнечных панелей равен 0,5% в год в среднем (медианное значение), но скорость деградации может быть выше в жарком климате и в кровельных системах. Степень деградации 0,5% означает, что выработка солнечной батареи будет снижаться со скоростью 0,5% в год. То есть на 20-й год службы модуль будет производить около 90% электроэнергии, произведенной в первый год.

На картинке представлен результат исследования в графическом виде.

Что касается полного срока службы, то соответствующих данных попросту нет. Нельзя с точностью сказать, сколько прослужит солнечная панель. Вон, в Швейцарии, например, 35 лет уже работает солнечная электростанция. Производители дают гарантию на сохранение какой-то доли номинальной мощности (performance warranty) на 20-30 лет, а после этого панели вырабатывают электроэнергию уже без всякой гарантии. опубликовано Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Основные элементы солнечная батарея для частного дома представляет собой фотогальваническую панель (не путать с нагревательной плитой для солнечной воды) и преобразователь. Фотоэлектрическая панель преобразует энергию солнечного излучения в электрическую.
Преобразователь преобразует электричество в постоянный ток, создаваемый солнечной энергией, в источник питания 230 В, 50 Гц. Солнечные батареи для частного дома Они размещены на крыше здания, на склонах крыши, направленных на юг, и соединены в ряд, чтобы они стали более напряженными.

Инвертор лучше всего расположен в помещении, где расположен главный распределительный щит с автоматическими выключателями, он также может быть расположен во второй комнате или на внешней стене здания.
Количество произведенного электричества солнечные батареи зависит от интенсивности солнечного излучения, присутствующего на них, от времени работы от солнца и правильной установки панелей.

Что вам нужно знать, прежде чем принимать решение о установке солнечной батареи в частный дом?

Убедитесь, что поверхность крыши — это то место, где мы хотим установить систему, ориентированную на юг, и что она не находится в тени других объектов, дымоходов, деревьев.

Избегайте затенения фотогальванических панелей. Убедитесь, что крыша достаточно большая для размещения солнечных батарей.

Таким образом, для мощности 1 кВт требуется 8-10 м2 свободной поверхности.
Наиболее часто задаваемые вопросы об установке солнечных батарей для частного дома:

Какие факторы влияют на эффективность солнечных элементов?

— направление крыши — при оптимальных условиях модули должны быть ориентированы на юг.

Если это невозможно на 100%, то принцип работает: ближе к югу, тем больше производительность фотогальванической системы;
— наклон крыши — производство электроэнергии с батареей будет наибольшим, когда солнце падает на солнечные элементы под прямым углом.

Какова жизнь солнечной батареи и от чего она зависит?

Оптимальный угол фотоэлектрических панелей для умеренной ширины составляет 30-40 °;
— затенение — архитектурные и экологические факторы, которые приводят к образованию теней, принадлежащих солнечным элементам, приводят к сокращению количества произведенной электроэнергии и ее следует избегать;
— производительность устройства — неправильно спроектированная или изготовленная установка может привести к потере емкости или непоправимому повреждению.

Где точка подключения солнечной энергии для частного дома, для электрического счетчика или перед ним?

s выход подключается к преобразователю на счетчике в любой точке внутренней проводки в доме, а еще лучше — сразу на метр, так что он будет генерировать электроэнергию для питания оборудования и фермерских зданий с электрическим питанием.

Солнечные батареи производят мощность в однофазной или трехфазной версии?

Трехфазные системы используются для мощности, превышающей 5 кВт.

Может ли солнечная батарея быть резервным источником энергии в здании в случае сбоя питания в сети питания?

Когда напряжение в сети, которая поставляет здание, исчезает, солнечная установка отключается. Перезапуск выполняется автоматически при отображении сетевого напряжения.

Конечно, есть возможность расширить свои функции, установив аккумулятор. Затем в случае сбоя питания может произойти переключение на резервный источник питания, который можно использовать до тех пор, пока аккумулятор не разрядится.

Однако это решение связано со значительным увеличением затрат на установку.

Когда фотоэлектрический солнечный элемент генерирует электричество?

Ночью очень сильные облака и туманы, полностью покрытые снежными фотогальваническими плитами, без напряжения в строительной сети.

Снегопад мешает установке?

Прохождение тока через солнечные элементы во время работы вызывает потепление поверхности, что приводит к таянию снега на плитах и ​​восстановлению нормальных условий для растений.

Как наружная температура влияет на работу устройства?

Фотоэлектрические панели имеют отрицательный температурный коэффициент.

Это означает, что при более низкой температуре окружающей среды, чем выше выходное напряжение, тем выше выходная мощность.

Какова устойчивость фотогальванической системы?

В отличие от других источников энергии, солнечные элементы не имеют движущихся элементов, что является решающим фактором их устойчивости.

Фотогальванические панели обеспечивают снижение производительности после 25 лет эксплуатации, не более 15%.

Что нужно делать при покупке собственной фотоэлектрической системы?

Решающим условием покупки устройства является правильный выбор компании, предлагающей продажу и установку устройства.

Мы не должны забывать, что около 70% продукции поступает из Китая. Компании, заявляющие о выпуске пластин в Европе, упускают из виду тот факт, что в большинстве случаев установка осуществляется с помощью импортных силиконовых элементов из Китая. Важнейшим элементом батареи является преобразователь, который в основном производится в Германии.

Также важно точно и правильно выбрать оставшиеся компоненты устройства, так как оно должно продолжаться не менее 25 лет.

Сколько времени вам нужно для установки и интеграции солнечных панелей в частный дом?

Полная установка системы для частного дома и его загрузка обычно занимает 2-3 дня. Подготовьте соответствующий проект по установке заранее и иногда подождите несколько дней для доставки соответствующих компонентов.

Что происходит с избытком произведенной электроэнергии?

Электрическая энергия, создаваемая солнечными батареями, должна быть сначала использована в доме.

В случае избыточной энергии, она должна использоваться для собственных нужд, но не продаваться (стоимость за киловатт-час, она очень высокая, и никто не будет покупать). Эта энергия отправляется дополнительным пользователям, таким как электрический котел для нагрева воды, кондиционеры или другие устройства. Например, в доме с хорошими солнечными батареями в солнечный день избыточное электричество для нагрева в состоянии приблизительно 150 литров воды при температуре от 10 ° C до 60 ° C.

Может ли фотоэлектрическая система заменить установку солнечного нагрева воды?

Да, конечно, есть много аргументов в пользу такого решения, особенно если мы планируем построить новый дом, хижину или виллу.

Не устанавливайте оборудование с устаревшей и менее эффективной технологией. Основным аргументом здесь является высокая прибыль и экономическая целесообразность.
При тех же финансовых затратах на установку мы получаем примерно на 50% больше энергии, и это электричество, которое можно использовать в любой форме, в том числе для отопления и горячей воды или кондиционирования воздуха в летние месяцы.

Еще один убедительный аргумент такого решения имеет отрицательный температурный коэффициент, отражающий физические свойства кремниевого фотоэлемента, что повышает эффективность фотоэлектрических систем, тем ниже температура окружающей среды, что дает определенное преимущество в течение зимы над установкой солнечного нагрева воды.

Как солнечные элементы работают в частном доме в случае использования дополнительного нагрева воды для бытовых целей?

Возобновляемые источники энергии (ВИЭ) непредсказуемы и зависят от естественных изменений, поэтому их нельзя считать основным источником питания.

Поэтому солнечную батарею следует рассматривать как вспомогательный источник для приготовления горячей воды для бытовых целей. Вода нагревается в том случае, если энергия, производимая на заводе, будет отвечать потребностям всех игроков в домашних приемниках (приоритет), а избыточная энергия будет возникать одновременно. Если этот излишек электроэнергии не будет использован, он войдет в энергоснабжение компании (обратите внимание, что измеритель мощности не вращается в противоположном направлении, так как он оснащен тормозом).
Благодаря использованию специального фильтра этот избыток может быть отправлен на электрический водонагреватель или на другой приемник.

Правильно спроектированная и сконструированная солнечная батарея для частного дома может обеспечить до 50% потребляемой энергии.
Использование специального энергетического фильтра для использования его излишков и направления для отопления, обогрева помещений, кондиционирования воздуха позволяет до 80% генерируемой энергии.

Основные преимущества использования солнечных батарей в частном доме:

— сокращение выплат электроэнергии;
— работа батареи даже в облачных условиях при использовании рассеянного солнечного света;
— наибольшее производство энергии происходит одновременно с спросом на электроэнергию в экономике (площадь с самой высокой стоимостью кВтч электроэнергии), и есть возможность дополнительной экономии;
— модульный характер установки позволяет увеличить ее пропускную способность, одновременно балансируя объем вложенных инвестиций;
— защита окружающей среды и окружающей среды, поскольку солнечные элементы в частном доме не выделяют CO2 и шум вообще, у них нет движущихся частей;
нет необходимости в обслуживании — устройство предназначено для автоматической работы не менее 25 лет;
— надежность — 5-летняя гарантия на оборудование и гарантия на 25 лет гарантируют спокойствие и уверенность в точности и адекватности финансовых вложений.

Самые эффективные солнечные батареи для дома сегодня - это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии.

Что надо знать про солнечные батареи для дома: их выбор, размещение и использование

Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»?

Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %.

    Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции.

    Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.

  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %.

    Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД.

Но все остается стандартно: высокая эффективность - соответствующая цена, низкая эффективность - стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи.

Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно.

    В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.

  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % – продукт от Q-Cells .

    Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.

  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью.

    16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие.

    First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.

  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole .

    Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь.

При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность – ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.

СОЛНЕЧНЫЕ БАТАРЕИ ДЛЯ ДОМА. КАК ВЫБРАТЬ ОБОРУДОВАНИЕ?

Вопрос выбора солнечных батарей для частного дома довольно непростой. Чтобы определить, какое оборудование Вам необходимо, ответить себе на несколько вопросов:

1. Тип панелей

Фото панелей трёх типов

Есть ли ограничение по площади?

Если да – лучше выбрать солнечные панели из монокристаллического кремния.

Этот тип панелей обладает наиболее высоким КПД. Такие батареи могут занимать меньше места при одной и той же мощности, что и поликремниевые панели. Солнечную батарею из монокристаллического кремния легко узнать — она состоит из псевдоквадратов черного цвета. Если ограничения по площади нет, берите солнечные батареи из поликристаллического кремния – они дешевле и немного лучше работают в пасмурную работу благодаря тому, что солнечные элементы имеют разную ориентацию кристаллов кремния.

Внешний вид солнечной батареи из поликристаллического кремния — ровные квадраты синеватого цвета с разными оттенками. Если же у Вас особые условия для размещения (например, изогнутая крыша или крыша из поликарбоната), то можно обратить внимание на гибкие солнечные панели из аморфного кремния.

Они клеятся на любую поверхность и не требуют дополнительных металлоконструкций. К тому же, эти батареи очень хорошо работают с рассеянным светом.

Поэтому, если солнечные дни в Вашем регионе — редкость, можно присмотреться именно к этим панелям. Еще одним вариантом можно считать солнечные батареи из микроморфного кремния. Это новое поколение аморфных солнечных батарей, работающих как в видимой, так и в инфракрасной части спектра. Практика показала, что такие панели дают большую суммарную годовую выработку по сравнению с классическими. Кроме того, такие панели менее требовательны к углу наклона и ориентации по сторонам света.

А еще они дешевле, потому что в производстве используется меньше кремния.

Сравним стоимость солнечных батарей для дома и дачи. Мы приводим цены в долларах, поскольку даже российские панели производятся из импортного сырья.

  • Самые дешевые — панели из аморфного или микроморфного кремния. Их цена 0,7-0,9 доллара за Вт.
  • На втором месте расположились поликристаллические солнечные панели с ценой 0.9 — 1 доллара за Вт.
  • Ну и самыми дорогими являются модули из монокристаллического кремния.

    Их цена 1,1 — 1,3 долларов за 1 Вт мощности.

2. Мощность панелей.

Чтобы определиться с мощностью солнечных панелей, нужно определить среднее потребление энергии в Вашем доме (например, по счетам за электроэнергию), а потом решить, какой процент от этого количества Вы хотите компенсировать при помощи альтернативных источников энергии. Допустим, в месяц Вы потребляете 300 кВт*ч электроэнергии. Это примерно 10 кВт*ч в день и 3600 кВт*ч. Для Крыма можно считать, что солнечные батареи, мощностью 1 кВт вырабатывают в среднем 1300 кВт*ч в год.

(около 110 кВт*ч в месяц). Если делается расчет для лета, считается, что панель отдает свою номинальную мощность 6 часов в день (солнечная батарея на 250 Вт выработает 250-6 = 1500 Вт*ч в сутки, при условии, что стоит солнечная погода). Тогда, для полной компенсации Вам необходимо установить 3 кВт панелей (12 панелей по 250 Вт, 1,65 м.кв.

каждая). Если установить сразу 12 панелей нет возможности, можно поставить половину, а потом добавить. Оборудование при этом менять не нужно!

3. Тип инвертора

Есть ли сеть 220 В?

Если нет и не будет, тогда выбирайте автономный инвертор.

В такой системе солнечные панели будут заряжать аккумуляторы, и одновременно энергия будет расходоваться на различных нагрузках. Рекомендуется также запастись генератором, который сможет зарядить АКБ, если выдастся особо пасмурная неделя и солнечной энергии будет недостаточно. Если сеть есть, то возникает следующий вопрос: нужно ли резервирование электроснабжения, или Вы хотите просто экономить? Если стоит цель просто экономить – достаточно поставить сетевой инвертор. Для него не нужны аккумуляторы.

Энергия, вырабатываемая солнечными батареями, преобразуется в 220 В и сразу расходуется потребителями в доме. Несколько интереснее система, которая еще и запасает энергию. В ней используется гибридный инвертор. Основная его особенность – совместная работа сети и солнечных батарей. При этом можно выбрать один из двух приоритетов для основного источника энергии. Если выбрать сеть – тогда инвертор будет брать не более разрешенной мощности от сети, а если не будет хватать – добирать необходимое количество энергии от альтернативных источников энергии и аккумуляторов.

Если же поставить приоритет солнечных батарей – тогда инвертор будет брать максимум энергии от них, а если не будет хватать, добирать немного из сети.

4. Мощность инвертора.

Мощность сетевого инвертора подбирается равной или немного большей, чем мощность массива панелей.

Для гибридного и автономного расчет немного сложнее. Чтобы узнать, какой мощности инвертор нужен в Вашей системе, нужно посчитать суммарную мощность электроприборов, которые могут быть одновременно включены в Вашем доме.

Допустим, у Вас дома есть такие электроприборы:

  • 10 лампочек (экономок) по 20 Вт = 200 Вт,
  • Холодильник класса А+, 300 Вт,
  • Насос, 500 Вт,
  • LCD телевизор 32″, 70 Вт,
  • Зарядное устройство мобильного телефона, 5 Вт,
  • Ноутбук, 60 Вт,
  • Пылесос, 1500 Вт,
  • Микроволновка, 2000 Вт,
  • Электрочайник, 1800 Вт,
  • Кондиционер, 1500 Вт.

В сумме получим 7935 Вт.

Дополнительно нужно взять запас минимум в 20% и получим 9500 Вт. В линейке инверторов МАП Энергия ближайшая модель – 12 кВт Однако если не включать одновременно пылесос, микроволновку и электрочайник, то максимальная суммарная мощность будет уже 4600 Вт + 20% = 5500 Вт – можно брать инвертор вдвое меньшей мощности – 6 кВт.

5. Тип контроллера заряда

Тут нам на выбор всего 2 типа: ШИМ и МРРТ. Разница между ними в том, что МРРТ контроллер снимает с солнечных панелей до 20% больше мощности по сравнению с ШИМ контроллером. При этом его стоимость в 2-3 раза выше. Чтобы помочь себе сделать выбор, сделайте простой расчет.

Если Вы поставили себе на дом солнечные батареи мощностью 1 кВт, то МРРТ контроллер может снять с них все 1000 Вт, в то время как ШИМ «освоит» всего 800 Вт. Чтобы он догнал по мощности МРРТ контроллер, нужно добавить еще одну панель на 200-250 Вт.

Разумеется, разрыв между контроллерами в 20% держится не 100% времени. Однако, солнечные батареи эксплуатируются не один год, и разница в 20% за 20 лет может набежать довольно большая. Что Вам выгоднее – добавить батарей или доплатить за более совершенный контроллер – решать Вам. Из опыта могу сказать, что при мощности панелей более 1 кВт уже выгоднее ставить МРРТ контроллер.

Мощность контроллера заряда Мощность контроллера заряда нужно выбирать по его паспортным данным (там указано, какую мощность он может прокачать через себя в АКБ).

Эта мощность должна быть больше мощности массива батареи, установленных у Вас дома (на даче). Также желательно (для ШИМ контроллеров), чтобы класс напряжения батареи соответствовал напряжению на аккумуляторах. Тогда будет меньше потерь на преобразовании напряжения внутри контроллера. Для МРРТ контроллеров такого ограничения нет. У них наоборот, лучше набрать большое напряжение. Тогда даже в самую пасмурную погоду контроллер сможет сохранить работоспособность и снимать мощность с батареи.

Тип аккумуляторов Среди всех типов аккумуляторов для систем на солнечных батареях самыми доступными являются свинцово-кислотные. Из них можно выбрать между герметизированными (AGM, GEL) и обслуживаемыми (тяговые, OPzV). Первые есть смысл ставить, когда планируется использование АКБ в буферном режиме (редкие глубокие разряды в моменты отключения питания, неглубокие разряды в процессе работы (добавление мощности)). Еще одним их преимуществом является их герметичность – можно устанавливать в любом помещении, нет особых требований к вентиляции.

Обслуживаемые АКБ надо устанавливать в помещении, где есть вентилляция, поскольку в процессе работы из таких аккумуляторов может выделяться водород. Однако, такие АКБ имеют очень большой ресурс — от 1500 циклов 100% разряда. Поэтому их целесообразно ставить в таких системах, где планируется постоянная циклическая работа от АКБ (автономные системы без сети 220В). Можно еще ставить автомобильные стартерные АКБ, но они плохо переносят разряд небольшими токами и имеют большой саморазряд.

Поэтому срок их службы в системах на солнечных батареях очень невелик.

8. Емкость аккумуляторов Про емкость можно сказать: чем больше, тем лучше.

Однако, рассчитать минимально необходимое количество АКБ можно. Для этого нужно определить сколько и каких электроприборов должны проработать в случае отключения электроэнергии и умножить это количество энергии на желаемое время автономной работы. Например, лампы (3 по 20 Вт*ч), ТВ (70 Вт*ч), ноутбук (60 Вт*ч), холодильник А+ (40 Вт*ч в час) должны проработать 6 часов.

Долгожители солнечных систем энергообеспечения

Суммарное потребление в час составит: 60+70+60+40 = 230 Вт. На 6 часов нужно будет 230*6 = 1380 Вт*ч (В*А*ч) Тогда ескость АКБ будет 1380 В*А*ч / 12 В = 115 А*ч. Чтобы не допустить 100% разряда и увеличить срок жизни АКБ, лучше вдвое увеличить емкость и взять АКБ на 200 А*ч. Такой аккумулятор сможет запасти в себе 2400 Вт*ч «солнечной» энергии.

Также Вы можете позвонить нам и задать любой вопрос нашим инженерам. Мы работаем с понедельника по пятницу с 9 до 18 часов без перерыва.

Эту статью про солнечные батареи для дома написал Егор Моисеев

Расчёт солнечных батарей

>

Приветствую вас на сайте е-ветерок.ру , сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр.

В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество.

А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц.

Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%.

Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам.

В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё , также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома

>

Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

>

Самый минимальный запас ёмкости аккумуляторов , который просто необходим должен быть такой чтобы пережить тёмное время суток.

Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100% . Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%.

По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев.

При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать.

КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%.

Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40% , чтобы компенсировать эти потери.

Но и это ещё не все потери .

Срок службы солнечных батарей

Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности.

А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20% .

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто.

Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч. Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч.

Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр. Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч.

Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц , разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт.

    Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт. Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт.

    Стоимость солнечных батарей и аккумуляторов

    >

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны.

    Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене.

    Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    E-VETEROK.RU энергия ветра и солнца — 2013г.

    Почта: [email protected] Google+










    Как дополнительный и альтернативный источник энергии, солнечные батареи достаточно активно применяются не только в промышленных, но и бытовых условиях. Но прежде чем установить себе такой источник электроэнергии, покупателю важно узнать, как подобрать оптимальные по характеристикам и мощности солнечные батареи для дома, ведь цена готовых комплектов варьируется в достаточно большом диапазоне. Попробуем разобраться как подбирают солнечные батареи для дома, стоимость комплекта, и что в него входит.

    Применение солнечных батарей в условиях средней полосы – здесь тоже возможно использование бесплатной энергии Источник 2gis.ru

    Где чаще всего используются солнечные батареи

    Сфера применения солнечных батарей огромна. Уже сейчас их с успехом используют для электроснабжения частных и многоквартирных домов, хозяйств, в том числе для освещения и обогрева теплиц, построек, освещения придомовой территории, питания приборов.

    Чаще всего про автономное электроснабжение задумываются в следующих случаях:

    • Если местность не электрифицирована, солнечные панели для частного дома обойдутся намного дешевле, чем использование жидкотопливных генераторов.
    • В сельской местности нередко отключают электричество, и люди буквально остаются без света. Включив автономное электроснабжение, можно жить в привычном комфорте длительное время, тем более, что в комплекте с солнечными панелями всегда идет аккумулятор.
    • В многоквартирных домах солнечные модули также применяются в качестве резервных, а также существуют проекты, предусматривающие использование солнечной энергии для горячего водоснабжения.

    Срок службы солнечных батарей

    Как правило, в документах на оборудование, указывается срок годности от 20 до 25 или даже 30 лет. Однако многие устройства продолжают функционировать и по прошествии указанного производителями периода. Например, первая в мире солнечная батарея работает уже свыше 60 лет, а за эти годы технология производства была существенно усовершенствована.

    Прототип солнечной батареи был разработан еще в конце XIX века Источник studygu.ru

    Явно можно выделить только один недостаток – при постоянной эксплуатации мощность оборудования снижается, тем не менее эти показатели незначительны: за 10 лет не больше чем на 10%.

    • Предупреждать физические повреждения, такие как падение деревьев, срыв ветром и царапин на чувствительных элементах. От последних зависит эффективность работы устройства.
    • Регулярно производить уход: обслуживание и очистку.
    • При необходимости установить ветрозаградительные конструкции.

    Солнечные панели для частного дома (готовые комплекты) в систему включают следующие составляющие: аккумуляторные батареи и силовая электроника. Срок службы первых устройств составляет от 2 до 15 лет, вторых – от 5 до 20 лет, в зависимости от характеристик, интенсивности эксплуатации и бережного ухода.

    Общие характеристики и доступность приобретения

    Оборудование не наносит вреда окружающей среде и обеспечивает стабильное питание без скачков напряжения. И, главное, поставляет бесплатную энергию: за которую не приходят коммунальные счета.

    Внешний вид солнечных панелей мало изменился, после их изобретения, чего не скажешь о внутренней «начинке» Источник ecoteco.ru

    Солнечная модуль преобразовывает свет в электрическую энергию, генерируя постоянный ток. Площадь панелей может достигать нескольких метров. Когда необходимо увеличить мощность системы, увеличивают количество модулей. Их эффективность зависит от интенсивности солнечного света и угла падения лучей: от местоположения, сезона, климатических условий и времени суток. Чтобы грамотно учитывать все эти нюансы, монтаж должны выполнять профессионалы.

    Виды модулей:

    • Монокристаллические. Состоят из силиконовых ячеек, преобразующих солнечную энергию. Отличаются компактными размерами. По своей производительности это самая эффективная (эффективность до 22 %) солнечная батарея для дома. Комплект (цена его одна из дорогостоящих) обойдется от 100 тыс. рублей.
    • Поликристаллические. В них используется поликристаллический кремний. Они не так эффективны (эффективность до 18%), как монокристаллические фотоэлементы. Зато их стоимость существенно ниже, поэтому они доступны широким слоям населения.
    • Аморфные. Имеют тонкопленочные фотоэлементы на основе кремния. Уступают моно и поликристаллам по выработке энергии, но и стоят дешевле. Их преимуществом является способность функционировать при рассеянном и даже слабом освещении.

    Поликристаллическая солнечная панель Источник superfb.site

    В систему входят также следующие компоненты:

    • Инвертор, который преобразует постоянный ток в переменный.
    • Аккумуляторная батарея. Она не только накапливает энергию, но и нивелирует перепады напряжения, когда меняется уровень освещенности.
    • Контроллер зарядного напряжения аккумулятора, режима зарядки, температуры и других параметров.

    В магазинах можно приобрести как отдельные компоненты, так и целые системы. При этом мощность устройств определяется исходя из конкретных потребностей.

    Функционирование, виды преобразователей и их сравнительная энергоэффективность

    Преобразователи или инверторы являются ключевыми компонентами солнечных батарей. Они трансформируют постоянный ток, вырабатываемый модулем в переменный напряжением 220 В, который необходим для работы электрических приборов. Инверторы имеют мощность от 250 до 8000 Вт. При покупке рекомендуют учитывать самую высокую нагрузку на сеть и соотносить напряжение и мощность. Оптимальными считаются параметры: 12 вольт и 600 ватт, 24 Вольт при 600-1500 Ватт, 48 Вольт, если мощность больше 1500 Ватт.

    Инвертор, на принципиальной схеме работы солнечных батарей Источник studygu.ru

    Разновидности преобразователей

    • Автономный. Перед тем как выбрать инвертор, надо определить, какие приборы будут от него питаться, и подсчитать их общую максимальную мощность в единицу времени. Рекомендуется взять мощность инвертора несколько больше. Некоторые бытовые электроприборы при включении создают резкое увеличение напряжения, из-за которого устройство может выйти из строя.
    • Синхронный. Они накапливают энергию, а излишки передают в электрическую сеть. В случае недостатка электричества, выработанного системой, преобразователь «позаимствует» его из общей сети. Применение модели синхронного типа позволит избежать перебоя в энергоснабжении.
    • Многофункциональные устройства объединили в себе преимущества первого и второго вида.

    Видео описание

    На видео показано, как выбрать инвертор для частного дома:

    На общую стоимость солнечных батарей для частного дома влияют и преобразователи. В зависимости от формы сигнала напряжения на выходе существует несколько видов их видов, которые различаются применением и стоимостью:

    • С синусоидальным сигналом. Создают ток высокого качества, что сказывается на их стоимости. От них работают крупные бытовые приборы: холодильники, котлы, кондиционеры.
    • Прямоугольным. К этим недорогим инверторам подключают осветительные приборы. Большинство домашних бытовых приборов с ними несовместимы.
    • Псевдосинусоидальным. Их преимуществом является возможность подключения практически всей домашней техники. Но качество сигнала снижено по сравнению с первым видом, поэтому они стоят дешевле.

    Ребристая форма инвертору нужна для максимально эффективного охлаждения Источник superfb.site

    Стоимость комплекта и основные технические характеристики, срок окупаемости

    Цены на готовые комплекты в основном варьируются от 30 000 до 2 000 000 руб. Они зависят от составляющих их устройств (от вида батарей, количества приборов, производителя и характеристик). Можно встретить бюджетные варианты стоимостью от 10 500 руб. В эконом-набор входит панель, контроллер заряда, коннектор.

    В стандартные комплекты включают:

    • энергетический модуль;
    • контроллер заряда;
    • аккумулятор;
    • инвертор;
    • стеллаж *;
    • кабель *;
    • клеммы*.

    * Предусмотрены в расширенной комплектации.

    Стандартный комплект оборудования Источник proumnyjdom.ru

    Технические характеристики указывают в руководстве к применению:

    • Мощность и размеры панелей. Чем больше нужна мощность, тем выгоднее покупать батареи больших размеров.
    • Энергоэффективность системы.
    • Температурный коэффициент показывает насколько температура влияет на мощность, напряжение и ток.

    По подсчетам специалистов, одна солнечная система, рассчитанная на 4 человека, окупается через 4 года. К тому же стоимость за последние 2 десятилетия сильно упала.

    Принцип работы солнечной электростанции в домашних условиях

    Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

    Видео описание

    На видео пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения:

    Как солнечная энергия используется для получения тепла

    Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

    Солнечные коллекторы состоят из:

    • бака-аккумулятора;
    • насосной станции;
    • контроллера;
    • трубопроводы;
    • фиттингов.

    По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

    Принцип действия солнечного коллектора Источник 21ek.ru

    Популярные производители солнечных батарей

    Самой распространенной в России является продукция китайских производителей, благодаря относительной дешевизне, по сравнению с продукцией, произведенной в других странах. К примеру, солнечные батареи из Китая почти вдвое ниже по цене, чем немецкие.

    Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

    Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

    • ООО «Хевел» в Новочебоксарске;
    • «Телеком-СТВ» в Зеленограде;
    • «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
    • ОАО «Рязанский завод металлокерамических приборов»;
    • ЗАО «Термотрон-завод» и другие.

    По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

    Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точке Источник pinterest.com

    Этапы монтажа батарей

    1. Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
    2. Устанавливаются панели при помощи специальных крепежных систем.
    3. Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.
    Для эффективного функционирования оборудования и продолжительного срока службы необходимым условием является правильно выполненный монтаж, который под силу только опытным специалистам.

    Несмотря на сложность подключения и калибровки, срок работ невелик – при наличии соответствующих инструментов, грамотные монтажники затратят на все про все примерно полдня.

    Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

    Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасности Источник pinterest.ca

    Как итог – перспективы развития солнечных технологий

    Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной пере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

    Прежде чем начать, хочу сразу предоставить цифры окупаемости этой системы для Российского климата средних широт. Нпример в Крыму такая система окупится лет через 10 и больше, а вот в Московской области время окупаемости данной системы может быть еще больше 10-15 лет. А если купить дорогостоящее оборудование то окупемости вообще никакой, только независимость от центрального поставщика электроэнергии. Я бы рекомендовал приобрести небольшой комплект на тот случай, если бывают частные отключения электричества, чтобы компенсировать это неудобство, но в Московской области часто бывает пасмурно и толку от этой системы практически нет. Ставьте хороший генератор с автозапуском и бесперебойной системой электроэнергии.
    В Европе и других развитых странах стало модно использовать альтернативные источники энергии, такие как солнечная энергия. Германия является лидером по использованию данного вида энергии. Вообще Германия всегда отличалась своей тягой к технологиям, и за это им большой респект, молодцы. В России тоже пытаются использовать солнечные панели, но к сожалению КПД такого вида энергии в наших широтах минимальное в отличии от тех стран, где солнечных каждый день может быть солнечным. Однако для дополнения к умному дому такой вариант энергии вполне приемлим.
    Практика показывает, что срок службы солнечных панелей может превышать 20 лет. Солнечные станции в Европе и США в течении 25 лет показали снижение мощности модулей на 10%. На основе данной статистики можно говорить о реальном сроке службы солнечных монокристаллических модулей более 30 лет.
    Поликристаллические модули обычно работают более 20 лет.
    Модули из аморфного кремния имеют срок службы от 7 лет (первое поколение тонкопленочных модулей) до 20 лет (второе поколение тонкопленочных модулей). Тонкопленочные модули могут терять от 10 до 40% мощности в первые 2 года эксплуатации. В связи с этим, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.
    Но монокристалические модули, это только приемник энергии. Основная проблема - это накопление энергии. Аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника - от 5 до 20 лет. Так что не бывает пока полностью автономных систем "поставил и забыл".
    Часто производители дают гарантию на модули от 10 до 25 лет, с гарантией, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения от 1 до 5 лет.
    Кристаллические модули являются лидерами на рынке. Монтаж в частных жилищах начался еще в 50-х годах, а массовое использование началось в конце 1970-х. - Можно делать выводы о долговечености этих модулей.
    Cрок службы кристаллических модулей около 30 лет. Сами производители делают ускоренные тесты по эксплуатации солнечных модулей, чтобы оценить реальный срок службы модулей. Интересный момент, что сами солнечные элементы в солнечных модулях, имеют практически неограниченный срок службы. Но выработка модулей со временем падает. Это результат разрушение пленки для герметизации модуля и разрушение задней поверхности модуля, а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.
    Производители могут дать самый оптимистичный прогноз - ухудшение не более 20% за 25 лет. Однако измерения, проведенные на реально работающих с 1980 годов модулей показывают, что их выработка уменьшилась не более, чем на 10%. Многие модули до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

    Похожие публикации