Интернет-журнал дачника. Сад и огород своими руками

Основой роста любого многоклеточного организма является процесс. Контрольная работа «Размножение и индивидуальное развитие организма. Соотношение роста и развития у одноклеточных организмов

1 вариант

I

1. В интерфазе митоза происходит удвоение количества ДНК в ядре.

2. Кроссинговер — это спаривание гомологичных хромосом.

3. Бивалентами называют слившиеся (спаренные) гомологичные хромосомы.

4. Половые клетки образуются только в результате мейоза.

5. В результате мейоза получаются 4 гаметы из 1 материнской клетки.

6. При овогенезе одна гамета не имеет жгутиков.

7. Обоеполые животные называются гермафродитами.

8. Почкование — вид полового размножения.

I I . Выбери правильный ответ. Ответы записать цифрами.

Признаки Задание

Из перечня выбрать признаки для митоза.

III

1. Преемственность между особями вида в ряду поколений обеспечивается:

а) обменом веществ

б) размножением особей

в) ростом клеток

г) кроссинговером

2. В основе роста любого многоклеточного организма лежит образование дочерних клеток с:

а) таким же, как в материнской клетке, набором хромосом

б) непостоянным набором хромосом

в) уменьшением вдвое набора хромосом

г) увеличением вдвое числа хромосом

3. Дочерний организм получает новое сочетание генов в процессе размножения

а) вегетативного

б) с помощью спор

в) почкованием

г) полового

4. Какой из названных ниже процессов сопровождается обменом наследственной информации?

А) мейоз

Б) митоз

В) дробление

Г) спорообразование

5. Взрослое растение представляет собой половое поколение (гаметофит) только у:

а) сосны

б) ромашки

в) мха

г) ужовника

IV

Вопросы Мейоз
2. Каковы фазы деления?

V

2 вариант

I . Определить , верно ли данное высказывание.

1. В интерфазе мейоза I происходит удвоение количества ДНК в ядре.

2. Конъюгация — это слипание гомологичных хромосом.

3. Бивалентами называют деспирализованные (раскручен­ные) хромосомы.

4. Соматические клетки образуются только в результате митоза.

5. В результате мейоза получаются 2 гаметы из 1 материн­ской клетки.

6. При сперматогенезе одна гамета не имеет жгутиков.

7. Размножение, при котором новый организм образуется из яйцеклетки без уча­стия сперматозоида, называется почкование.

8. Раздельнополые животные называются гермафродитами.

I I . Выбери правильный ответ. Ответы записать цифрами.

Признаки Задание
  1. Процесс состоит из двух делений.
  2. Типичное деление соматических клеток.
  3. Перед началом деления происходит удвоение ДНК.
  4. Процесс является обязательным на этапе созревания гамет.
  5. Состоит всего из одного деления.
  6. Происходит при распускании листьев из почек.
  7. Осуществляется перекрест хромосом – кроссинговер.
  8. Гомологичные хромосомы конъюгируют.
  9. Результатом является образование воспроизводящих клеток.
  10. Не происходит конъюгации гомологичных хромосом.
  11. Происходит редукционное деление.
  12. Образовавшаяся клетка имеет диплоидный набор хромосом.

Из перечня выбрать признаки для мейоза.

III . Тесты. Выбери один правильный ответ:

1. Стадия зародышевого развития, в результате которой формируется структура двухслойного зародышевого мешка, называется:

а) бластулой

б) гаструлой

в) зиготой

г) мезодермой

2. Слияние ядер двух гаплоидных клеток с образованием диплоидной клетки происходит в результате:

а) ароморфоза

б) дробления

в) органогенеза

г) оплодотворения

3. Какой зародышевый листок дает начало внешним покровам организма животных, а также формирует нервную систему и связанные с ней органы чувств?

А) энтодерма

Б) мезодерма

В) эктодерма

Г) зигота

4. Как называется один из видов постэмбрионального развития, когда родившийся организм сходен со взрослым, но имеет меньшие размеры и иные пропорции?

А) прямое развитие

Б) развитие с метаморфозом

В) непрямое развитие

Г) эмбриональное развитие

5. Сколько хроматидных нитей входит в мейотический конъюгационный комплекс у организмов-гаплоидов?

А) 8 б) 0 в) 2 г) 4

IV . Заполните таблицу. Дайте краткий ответ:

Вопросы для сравнения Митоз
1. Какие изменения происходят в ядре до начала деления (в интерфазе)?
2. Каковы фазы деления?
3. Характерна ли конъюгация гомологичных хромосом?
4. Какое число дочерних клеток образуется?
5. Какое число хромосом получает каждая дочерняя клетка?
6. Где происходит данный процесс?
7. Какое значение имеет для существования вида?

V .Задание со свободным ответом:

2)Укажите причину.

Ответы

1 вариант

I . Определить, верно ли данное высказывание.

ДА- 1 2 3 4 5 7

НЕТ- 6 8

I I . Выбери правильный ответ. Ответы записать цифрами.

2 3 5 6 10 12

III . Тесты. Выбери один правильный ответ:

1-Б 2-А 3-Г 4-А 5-А

IV . Заполните таблицу. Дайте краткий ответ:

Вопросы Мейоз
1. Какие изменения происходят в ядре до начала деления (в интерфазе)? Редупликация ДНК
2. Каковы фазы деления?

I редукционное деление:

-профаза I

-метофаза I

-анафаза I

-телофаза I

I I редукционное деление:

-профаза II

-метофаза II

-анафаза II

-телофаза II

3. Характерна ли конъюгация гомологичных хромосом? да
4. Какое число дочерних клеток образуется? 4
5. Какое число хромосом получает каждая дочерняя клетка? n гаплоидный
6. Где происходит данный процесс? половые железы
7. Какое значение имеет для существования вида? источник комбинативной изменчивости

V .Задание со свободным ответом:

В ядре каждой соматической (диплоидной) клетки у кролика содержится 22 пары хромосом, а у дрозофилы – 4 пары.

1)Сколько содержится хромосом в каждой дочерней клетке, образующейся в результате митоза?

Соматическая клетка кролика содержит 44 хромосомы, дрозофилы – 8 хромосом.

2)Сколько хромосом содержится в половых клетках тех же организмов?

Половые клетки содержат гаплоидный набор хромосом:

Гаметы кролика содержит 22 хромосомы, дрозофилы – 4 хромосом.


2 вариант

I . Определить, верно ли данное высказывание.

ДА - 2 4

НЕТ- 1 3 5 6 7 8

I I . Выбери правильный ответ. Ответы записать цифрами.

1 3 4 7 8 9

III . Тесты. Выбери один правильный ответ:

1-Б 2-Г 3-В 4-А 5-Г

IV . Заполните таблицу. Дайте краткий ответ:

Вопросы МИТОЗ
1. Какие изменения происходят в ядре до начала деления (в интерфазе)? Редупликация ДНК
2. Каковы фазы деления?

-профаза

-метофаза

-анафаза

-телофаза

3. Характерна ли конъюгация гомологичных хромосом? нет
4. Какое число дочерних клеток образуется? 2
5. Какое число хромосом получает каждая дочерняя клетка? 2n диплоидный
6. Где происходит данный процесс? во всех тканях организма
7. Какое значение имеет для существования вида?

-рост организма

-развитие организма

-бесполое размножение одноклеточных

-заживление ран

-восстановление утраченных органов и тканей

V .Задание со свободным ответом:

Общая масса всех молекул ДНК в 46 хромосомах одной соматической клетки человека составляет около 6 х 10 -9 мг.

1)Объясните, чему будет равна масса всех хромосом в одной дочерней и в двух дочерних клетках, образующихся путем митоза.

В одной дочерней - около 6 х 10 -9 мг в обеих - 12 х 10 -9 мг

2)Укажите причину.

-Каждая соматическая клетка образуется путем митоза, перед которым происходит удвоение генетической информации. Т.е. 6 х 10 -9 мг Х 2 = 12 х 10 -9 мг

-во время митоза происходит расхождение удвоенных гомологичных молекул ДНК и количество приходит в норму, т. е. 6 х 10 -9 мг

МБОУ СОШ№ ____

2 вариант

I . Определить, верно ли данное высказывание.

ДА - _____________ НЕТ- _____________

I I . Выбери правильный ответ. Ответы записать цифрами.

III . Тесты. Выбери один правильный ответ:

1-___ 2-___ 3-___ 4-___ 5-___

IV . Заполните таблицу. Дайте краткий ответ:

Вопросы МИТОЗ
1. Какие изменения происходят в ядре до начала деления (в интерфазе)?
2. Каковы фазы деления?
3. Характерна ли конъюгация гомологичных хромосом?
4. Какое число дочерних клеток образуется?
5. Какое число хромосом получает каждая дочерняя клетка?
6. Где происходит данный процесс?
7. Какое значение имеет для существования вида?

V .Задание со свободным ответом:

Учитель: _____________ (_______)

Контрольная работа «Размножение и индивидуальное развитие организма»

Учени_________класса____________ ___МБОУ СОШ№ ____

Ф.И.О._________________________________________________________________

1 вариант

I . Определить, верно ли данное высказывание.

ДА- _______________ НЕТ-______________________

I I . Выбери правильный ответ. Ответы записать цифрами.

III . Тесты. Выбери один правильный ответ:

1-__ 2-___ 3-___ 4-___ 5-___

IV . Заполните таблицу. Дайте краткий ответ:

Вопросы Мейоз
1. Какие изменения происходят в ядре до начала деления (в интерфазе)?
2. Каковы фазы деления?
3. Характерна ли конъюгация гомологичных хромосом?
4. Какое число дочерних клеток образуется?
5. Какое число хромосом получает каждая дочерняя клетка?
6. Где происходит данный процесс?
7. Какое значение имеет для существования вида?

V .Задание со свободным ответом:

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________количество правильных ответов________________оценка__________________

Учитель: _____________ (___________________________)

В. А. Финенко, МБОУСОШ № 5, г. Новочеркасск, Ростовская область

Тест по биологии Деление клетки для учащихся 6 класса с ответами. Тест состоит из 2 вариантов в каждом по 9 заданий.

1 вариант

1. В основе роста и развития многоклеточного организма ле­жит важнейшее свойство клетки —

1) деление
2) выделение
3) движение
4) раздражимость

2. Митоз представляет собой процесс клеточного

1) деления
2) выделения
3) питания
4) дыхания

3. Важную роль в процессе деления клетки выполняет

1) хлоропласт
2) ядро
3) цитоплазма
4) вакуоль

4. В результате митоза из одной материнской клетки образуется дочерних клеток

1) одна
2) две
3) три
4) четыре

5. Образование четырёх клеток из одной материнской происходит в результате

1) раздражимости организма
2) движения организма
3) митотического деления
4) мейотического деления

6. Какой процесс изображён на рисунке?

1) питание растения
2) дыхание животного
3) деление клетки
4) выделение веществ

7.

А. В ходе митоза различают четыре последовательные фазы.
Б. Главную роль в делении клеток играет цитоплазма.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

8. Верны ли следующие утверждения?

А. Митоз завершается образованием четырёх дочерних клеток.
Б. В расхождении хромосом в ходе деления клетки прини­мают участие веретёна деления.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

9. Установите верную последовательность процессов, проис­ходящих в ходе митоза.

1) Хромосомы располагаются по экватору клетки.
2) Образуются ядерные оболочки, оформляются дочерние клетки.
3) Хромосомы становятся хорошо заметными, к ним при­крепляются нити веретена деления.
4) Дочерние хромосомы (хроматиды) расходятся к полю­сам клетки.

2 вариант

1. Замена и восстановление тканей и некоторых частей в мно­гоклеточном организме происходит благодаря

1) кристаллизации веществ
2) движению организма
3) раздражимости организма
4) делению клеток

2. Сущность процесса мейоза заключается в клеточном

1) выделении
2) питании
3) дыхании
4) делении

3. В ходе клеточного деления передачу наследственной информации осуществляет

1) хлоропласт
2) набор хромосом
3) плазматическая мембрана
4) вакуоль с клеточным соком

4. Образование из одной материнской клетки двух дочерних происходит в результате

1) раздражимости организма
2) движения организма
3) митотического деления
4) мейотического деления

5. В результате мейоза из одной материнской клетки образуется дочерних клеток

1) одна
2) две
3) три
4) четыре

6. На рисунке изображено деление клетки. Какие струк­туры обозначены вопроси­тельным знаком?

1) хромосомы
2) хлоропласты
3) цитоплазма
4) вакуоли

7. Верны ли следующие утверждения?

А. В результате митоза образуется две дочерние клетки, которые являются точной копией материнской клетки.
Б. Перед митозом в клетке происходит образование и запа­сание веществ и энергии.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

8. Верны ли следующие утверждения?

А. В ходе митоза нити веретена деления прикрепляются к хромосомам.
Б. В заключительной фазе митоза вокруг хромосом фор­мируется ядерная оболочка.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

9. Установите верную последовательность процессов, происходящих в ходе митоза.

1) К полюсам материнской клетки расходятся дочерние хромосомы (хроматиды).
2) Ядерная оболочка растворяется, к хромосомам прикре­пляются нити веретена деления.
3) Оформляются дочерние клетки с собственными ядрами.
4) Хромосомы располагаются на экваторе клетки.

Ответ на тест по биологии Деление клетки
1 вариант
1-1
2-1
3-2
4-2
5-4
6-3
7-1
8-2
9-3142
2 вариант
1-4
2-4
3-2
4-3
5-4
6-1
7-3
8-3
9-2413

Вспомните!

Как, согласно клеточной теории, происходит увеличение числа клеток?

Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте свое мнение.

В момент рождения ребенок весит в среднем 3–3,5 кг и имеет рост около 50 см, детеныш бурого медведя, чьи родители достигают веса 200 кг и более, весит не более 500 г, а крошечный кенгуренок – менее 1 грамма. Из серого невзрачного птенца вырастает прекрасный лебедь, юркий головастик превращается в степенную жабу, а из посаженного возле дома желудя вырастает громадный дуб, который спустя сотню лет радует своей красотой новые поколения людей. Все эти изменения возможны благодаря способности организмов к росту и развитию. Дерево не превратится в семя, рыба не вернется в икринку – процессы роста и развития необратимы. Эти два свойства живой материи неразрывно связаны друг с другом, и в их основе лежит способность клетки к делению и специализации.

Рост инфузории или амебы – это увеличение размеров и усложнение строения отдельной клетки за счет процессов биосинтеза. Но рост многоклеточного организма – это не только увеличение размеров клеток, но и их активное деление – увеличение количества. Скорость роста, особенности развития, размеры, до которых может дорасти определенная особь, – все это зависит от многих факторов, в том числе и от влияния среды. Но основным, определяющим фактором всех этих процессов служит наследственная информация, которая хранится в виде хромосом в ядре каждой клетки. Все клетки многоклеточного организма происходят из одной оплодотворенной яйцеклетки. В процессе роста каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы, обладая общей наследственной программой организма, специализироваться и, выполняя свою определенную функцию, являться неотъемлемой частью целого.

В связи с дифференцировкой, т. е. разделением на разные типы, клетки многоклеточного организма имеют неодинаковую продолжительность жизни. Например, нервные клетки перестают делиться еще во время внутриутробного развития, и в течение жизни организма их количество может только уменьшаться. Однажды возникнув, больше не делятся и живут столько, сколько ткань или орган, в состав которых они входят, клетки, образующие поперечно-полосатые мышечные ткани у животных и запасающие ткани у растений. Постоянно делятся клетки красного костного мозга, образуя клетки крови, продолжительность жизни которых ограничена. В процессе выполнения своих функций быстро гибнут клетки кожного эпителия, поэтому в ростковой зоне эпидермиса клетки делятся очень интенсивно. Активно делятся камбиальные клетки и клетки конусов нарастания у растений. Чем выше специализация клеток, тем ниже их способность к размножению.

В организме человека около 10 14 клеток. Ежедневно погибает около 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов. Самые короткоживущие – это клетки кишечного эпителия, чья продолжительность жизни составляет всего 1–2 дня.

Жизненный цикл клетки. Период жизни клетки от момента ее возникновения в процессе деления до гибели или конца последующего деления называют жизненным циклом. Клетка возникает в процессе деления материнской клетки и исчезает в ходе собственного деления или гибели. Продолжительность жизненного цикла у разных клеток очень сильно различается и зависит от типа клеток и условий внешней среды (температуры, наличия кислорода и питательных веществ). Например, жизненный цикл амебы равен 36 часам, а бактерии могут делиться каждые 20 минут.

Жизненный цикл любой клетки представляет собой совокупность событий, протекающих в клетке с момента ее возникновения в результате деления и до гибели или последующего митоза . Жизненный цикл может включать митотический цикл, состоящий из подготовки к митозу – интерфазы и самого деления, а также стадию специализации – дифференцировки, во время которой клетка выполняет свои специфические функции. Продолжительность интерфазы всегда больше, чем само деление. У клеток кишечного эпителия грызунов интерфаза длится в среднем 15 часов, а деление осуществляется за 0,5–1 час. Во время интерфазы в клетке активно идут процессы биосинтеза, клетка растет, образует органоиды и готовится к следующему делению. Но, несомненно, самым важным процессом, происходящим во время интерфазы в ходе подготовки к делению, является удвоение ДНК (§ ).


Деление клетки . Митоз" class="img-responsive img-thumbnail">

Рис. 52. Фазы митоза

Две спирали молекулы ДНК расходятся и на каждой из них синтезируется новая полинуклеотидная цепь. Редупликация ДНК происходит с высочайшей точностью, что обеспечивается принципом комплементарности. Новые молекулы ДНК являются абсолютно идентичными копиями исходной, и после завершения процесса удвоения они остаются соединенными в области центромеры. Молекулы ДНК, входящие в состав хромосомы после редупликации, называют хроматидами.

В точности процесса редупликации заключается глубокий биологический смысл: нарушение копирования привело бы к искажению наследственной информации и, как следствие, к нарушению функционирования дочерних клеток и всего организма в целом.

Если бы удвоения ДНК не происходило, то при каждом делении клетки количество хромосом уменьшалось бы вдвое и довольно скоро в каждой клетке совсем не осталось бы хромосом. Однако нам известно, что во всех клетках тела многоклеточного организма количество хромосом одинаково и из поколения в поколение не изменяется. Это постоянство достигается благодаря митотическому делению клеток.

Митоз. Митоз – это деление, в процессе которого происходит строго одинаковое распределение точно скопированных хромосом между дочерними клетками, что обеспечивает образование генетически идентичных – одинаковых – клеток.

Весь процесс митотического деления условно разделяют на четыре фазы: профаза, метафаза, анафаза и телофаза (рис. 52).

В профазе хромосомы начинают активно спирализоваться – скручиваться и приобретают компактную форму. В результате такой упаковки считывание информации с ДНК становится невозможным и синтез РНК прекращается. Спирализация хромосом является обязательным условием успешного разделения генетического материала между дочерними клетками. Представьте себе некое небольшое помещение, весь объем которого заполнен 46 нитями, общая длина которых в сотни тысяч раз превышает размер этого помещения. Это ядро человеческой клетки. В процессе редупликации каждая хромосома удваивается, и мы имеем в том же объеме уже 92 перепутанные нити. Разделить их поровну, не запутавшись и не порвав, практически невозможно. Но смотайте эти нити в клубки, и вы легко их сможете распределить на две равные группы – по 46 клубков в каждой. Нечто аналогичное и происходит во время митотического деления.

К концу профазы ядерная оболочка распадается, и между полюсами клетки протягиваются нити веретена деления – аппарата, который обеспечивает равномерное распределение хромосом.

В метафазе спирализация хромосом становится максимальной, и компактные хромосомы располагаются в экваториальной плоскости клетки. На этой стадии отчетливо видно, что каждая хромосома состоит из двух сестринских хроматид, соединенных в области центромеры. Нити веретена деления прикрепляются к центромере.

Анафаза протекает очень быстро. Центромеры расщепляются надвое, и с этого момента сестринские хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, оттягивают хромосомы к полюсам клетки.

На стадии телофазы дочерние хромосомы, собравшиеся у полюсов клетки, раскручиваются и вытягиваются. Они вновь превращаются в хроматин и становятся плохо различимыми в световой микроскоп. Вокруг хромосом на обоих полюсах клетки формируются новые ядерные оболочки. Образуются два ядра, содержащие одинаковые диплоидные наборы хромосом.


Рис. 53. Значение митоза: А – рост (кончик корня); Б – вегетативное размножение (почкование дрожжей); В – регенерация (хвост ящерицы)

Завершается митоз делением цитоплазмы. Одновременно с расхождением хромосом органоиды клетки приблизительно равномерно распределяются по двум полюсам. В животных клетках клеточная мембрана начинает впячиваться внутрь, и клетка делится путем перетяжки. В клетках растений мембрана формируется внутри клетки в экваториальной плоскости и, распространяясь к периферии, разделяет клетку на две равные части.

Значение митоза. В результате митоза возникают две дочерние клетки, содержащие столько же хромосом, сколько их было в ядре материнской клетки, т. е. образуются клетки, идентичные родительской. В нормальных условиях никаких изменений генетической информации в процессе митоза не происходит, поэтому митотическое деление поддерживает генетическую стабильность клеток. Митоз лежит в основе роста, развития и вегетативного размножения многоклеточных организмов. Благодаря митозу осуществляются процессы регенерации и замены отмирающих клеток (рис. 53). У одноклеточных эукариотов митоз обеспечивает бесполое размножение.

Вопросы для повторения и задания

1. Что такое жизненный цикл клетки?

2. Каким образом в митотическом цикле происходит удвоение ДНК? В чем смысл этого процесса?

3. В чем заключается подготовка клетки к митозу?

4. Опишите последовательно фазы митоза.

5. Каково биологическое значение митоза?

<<< Назад
Вперед >>>

Основой любого роста является рост клеток. Рост клеток состоит из следующих последовательных процессов: деления, роста протоплазмы, роста растяжением и дифференцировки. Деление клеток и рост протоплазмы происходит в меристеме (эмбриональной зоне) и поэтому могут быть объединены под названием эмбриональный рост.

Эмбриональный рост начинается с деления эмбриональной (способной к делению) материнской клетки.

Рост протоплазмы – это увеличение количества протоплазмы в клетке, и таким образом, новообразование живой материи при небольшом увеличении объема. Рост протоплазмы состоит из процессов репликации ДНК и последовательности реакций: ДНК → РНК → фермент (белки) → продукт; процесс включает в себя транспирацию и многочисленные ферментативные реакции. В конусе нарастания рост протоплазмы одной клетки длится в среднем 15–20 час. По причине роста протоплазмы она вырастает приблизительно до размеров материнской клетки.

После окончания роста протоплазмы клетка может переходить к делению, и таким образом, оставаться эмбриональной или она может перейти в фазу растяжения для того, чтобы последовательно превратиться в клетку постоянной ткани. В том случае, если эмбриональная клетка вновь делится, период роста ее протоплазмы ограничен двумя митозами и называется интерфазой.

Рост растяжением представляет собой последующее увеличение объема клетки при сильном поступлении воды и образовании вакуолей, но при незначительном увеличении массы протоплазмы.

Рост клетки растяжением происходит очень быстро и включает несколько этапов. За 1 час клетка может увеличиваться в 2 раза. Кроме того, что идет быстрое поступление воды, происходит и новообразование специальных белков.

На первом этапе в клетке, способной к растяжению, происходит два процесса – замедление синтеза компонентов цитоплазмы и медленное образование компонентов клеточной оболочки. На этом этапе также увеличивается интенсивность дыхания, наблюдается активное новообразование фосфолипидов (для этапа характерно отсутствие вакуолей).

На втором этапе под воздействием ИУК происходит размягчение оболочек. Этот процесс связан с активацией деятельности ряда целлюлозо- и пекталитических ферментов, благодаря которым повышается эластичность клеточных оболочек. Одновременно в клетке происходит активное образование вакуолей, повышается активность гидролитических ферментов, вакуоли наполняются сахарами, аминокислотами и другими смотически активными соединениями. Таким образом, вода активно поступает в клетку в результате размягчения клеточной стенки, и формируется большая центральная вакуоль.

Второй этап растяжения клетки обусловлен рядом биохимических реакций, среди которых ведущую роль играет ИУК, запускающая выделение Н + -ионов из цитоплазмы (Н + -помпа). В итоге происходит подкисление клеточных стенок, в которых активируются ферменты типа кислых гидролаз и происходит разрыв кислотолабильных связей. В результате таких разрушений происходит два типа изменений в оболочке – образование просветов и сдвиги углеводных слоев, т. е. своеобразное растяжение углеводного матрикса.

Последний этап клеточного растяжения – остановка этого процесса. Почему клетка растягивается до определенных пределов? Существуют три гипотезы, каждая из которых с одинаковой вероятностью объясняет процесс растяжения.

1. Ауксин активирует не только разрыхление оболочки и разрыв ковалентных связей, но и активирует синтез элементов вторичной клеточной стенки; последняя тормозит растяжение клетки.

2. В клетке происходит синтез предшественников лигнина, которые участвуют в разрушении ауксина и торможении клеточного растяжения.

3. В клетке на последнем этапе растяжения синтезируется в большом количестве этилен – антагонист ауксина и ингибитор клеточного растяжения.

Растянутая клетка с большой центральной вакуолью переходит к следующему этапу жизнедеятельности – дифференцировке . Дифференцировкой называют превращение эмбриональной клетки в специализированную. После окончания роста растяжением отдельные клетки начинают развиваться разными путями. Первый шаг дифференцировки состоит из того, что в одной эмбриональной клетке начинается растяжение, тогда как в это время другая вновь делится, и остается эмбриональной.

Каждое состояние дифференцировки клетки как эмбриональной, так и специализированной характеризуется определенной генной моделью, которая вызывает эту дифференцировку через индукцию специфических ферментов. Дифференцировка – это, другими словами, появление качественных различий между клетками, тканями и органами в процессе развития.

Когда дифференцировку клеток изучают по морфологическим признакам, тогда говорят о структурной дифференцировке. Когда разговор идет о формировании в клетках отличий в составе белков-ферментов, в способности к синтезу запасных или других веществ и других биохимических изменениях, дифференцировку называют биохимической.

Дифференцировка клеток приводит к возникновению как специфической формы, так и специализации выполняемых функций. Различают и физиологическую дифференцировку. К явлениям физиологической дифференцировки относят формирование разницы между корнями и побегом, между вегетативными и репродуктивными фазами жизненного цикла.

Как правило, дифференцированные клетки объединены в ткани, т. е. образуют группы клеток, которые выполняют определенную физиологическую функцию и имеют схожее морфологическое строение, которое обеспечивает реализацию этой функции.

Нужно отметить, что существуют и разные классификации типов дифференцированных клеток, одну из них можно представить в следующем виде:

– паренхимные, которые характеризуются большими размерами, тонкими оболочками, содержанием хлоропластов или запасных веществ;

– проводящие и поддерживающие – все клетки этой группы вытянуты, часть из них сильно лигнифицирована, представлена трахеидами, сосудами и волокнами. Живое содержимое в них почти отсутствует;

– покровные – обычно находятся на поверхности и покрыты водонепроницаемыми веществами (воском, кутином, суберином). К ним относится эпидермис и перидерма;

– репродуктивные, образующиеся в определенные периоды жизненного цикла растений, из которых потом формируются гаметы, необходимые для полового размножения высших растений.

Очень важным вопросом клеточной дифференцировки является вопрос о механизмах, которые лежат в основе этого явления. Начальным этапом дифференцировки является образование физиологической оси с двумя полюсами. Дальнейшая дифференцировка многоклеточного организма определяется дифференцированной реализацией генетической информации во времени и пространстве, которая содержится в генотипе клетки.

Таким образом, в индукции дифференцировки первыми шагами служит возникновение полярности. Полярность индуцируется градиентом какого-либо фактора окружающей среды. Фактор может иметь физическую (свет, сила тяжести, электрическое поле, температура) или химическую (фитогормоны, ионы Са 2+ и др.) природу.

Возникшая полярная ось является необходимой предпосылкой для поддержания внутриклеточных градиентов.

В многоклеточном организме значительную роль в дифференцировке играет передача информации между клетками. У растений наиболее изучена гормональная передача информации и в значительно меньшей мере электрофизиологический способ передачи информации. Начавши дифференцироваться, клетки не только изменяются по своей структуре, но и занимают определенное место в ассоциации себе подобных, образуют протканевую структуру.

Соседство клеток одна с другой обеспечивает программу дифференцировки и рост клеточной ассоциации. Контакты растущих клеток в протканевых фрагментах происходят не только за счет поверхностных агентов, но и при участии внутриклеточных компонентов. Большую роль при этом, вероятно, играют микротрубочки, которые состоят из подобного актину белка тубулина.

Сформировав протканевую структуру, клетки начинают свое кооперативное движение: пласт клеток перемещается один относительно другого, образуя первичную ткань.

Дифференцировка клеток во вновь образованной ткани происходит в два этапа. Сначала формируется одна из специализированных клеток, затем возникают ей подобные. Большую роль в процессе тканевой дифференцировки играют фитогормоны.

В растущем органе, каким является, например лист, формирование тканей происходит неодновременно. Прежде всего, клеточное деление заканчивается в эпитеальной и проводящей тканях, затем наступает процесс активного клеточного растяжения и дифференцировки. После этого подобные процессы происходят в мезофилле листа.

Формирование органа, таким образом, происходит за счет последовательной дифференцировки отдельных тканей. Однако, конечный размер органа – это комплексный результат роста его отдельных тканей и клеток, т. е. размер и форма органа предопределяются в меристеме.

Будущая дифференцировка зависит от того, в какой части меристемы находится инициальная клетка. Так, когда меристематическая клетка локализована в органогенной зоне, то из нее образуется группа клеток, которая составляет лист, клетки субапикальной зоны формируют стебель и т. д.

Следовательно, уже в меристематической зоне происходит своеобразный процесс детерминации , в результате которого клеточная система выбирает один из многих возможных путей развития.

Если коротко отметить, то дифференцировка растительных клеток включает в себя индукцию полярности и дифференциальной активности генов, в результате которых клетка детерминируется и приобретает черты специализации. В качестве индукторов дифференцировки, как отмечалось, выступают как физические, так и химические факторы внутренней и внешней среды. Причем каждая клетка непрерывно получает информацию о своем окружении и развивается в соответствии с этой информацией.

Детерминация – это определение пути дифференцировки клетки. При детерминации делается выбор из большого количества потенций (генов, информации) в определенном направлении. Детерминация клетки может быть запрограммирована или возникает под воздействием разных внешних факторов: соседних клеток, гормонов и т. д.

Важную роль в детерминации будущей дифференцировки играет клеточное окружение. Пересадка одной клетки из группы эмбриональных клеток в область со специфическими функциями может полностью изменить будущую программу развития этих клеток. Особенно хорошо эти опыты удаются с зародышами насекомых. Так клетки будущего глаза превращаются в клетки крыла насекомых и т. д.

Растениям принадлежат интенсивные регенерирующие способности. Черенок в определенных условиях способен давать целое растение, но такой же регенерирующей способностью обладает лист (листовой черенок), и, наконец, часть клетки – протопласт. Проходя через ряд промежуточных фаз, протопласты становятся клетками, регенерируя оболочку.

Это связано с уникальной способностью растительной клетки – под влиянием воздействий реализовать принадлежащую ей тотипотентность и давать начало целому организму. Тотипотентной является любая клетка растения, так как она владеет полным генофондом, т. е. всеми возможностями будущего организма. Тотипотентные клетки – это генетически однородные клетки.

Далее следует отметить, что все органы растительного организма взаимосвязаны и влияют на рост друг друга. Влияние одних частей организма на скорость и характер роста других, часто на большие расстояния, называют корреляцией. Корреляция обуславливает упорядоченную взаимозависимость отдельных частей растения. Корреляции можно сравнить с отношениями между клетками, перенесенными на уровень тканей и органов.

Включая в себя дальний транспорт, корреляции связаны с действием гормонов (хотя не каждая корреляция имеет гормональный характер). Когда место образования гормона не совпадает с местом действия, то мы имеем дело с иным типом корреляции. В принципе ускорение роста в зоне растяжения колеоптиля ауксином, который поступает с его верхушки, является простейшим примером корреляции.

Только в редких случаях один гормон имеет решающее значение для корреляции, а чаще всего, необходимо количественное соотношение нескольких гормонов. В полярных, однонаправленных, воздействиях почти всегда участвуют полярно транспортируемый ауксин.

Имеет место как коррелятивная стимуляция так и коррелятивное торможение. В первом случае, растение с более мощной корневой системой благодаря большему поступлению питательных веществ имеет и лучший рост побегов; побег влияет на корень, поставляя ему ауксин, а корень действует на побег при помощи цитокининов и гиббереллинов. Во втором, размер плодов уменьшается с увеличением их количества; апикальное доминирование – верхушечный побег тормозит развитие боковых; удаление верхушечного побега приводит к развитию боковой почки, т. е. происходит разветвление стебля.



Похожие публикации