Интернет-журнал дачника. Сад и огород своими руками

Как сделать двигатель реверсивного движения. Реверсивная схема подключения электродвигателя — фазировка. Схема подключения электродвигателя через магнитный пускатель

Сегодня я Вам расскажу про реверс электродвигателя.

В данной статье Вы познакомитесь со схемой реверса электродвигателя, а также узнаете как она работает. А в конце я снял для Вас специальный видео-ролик, где покажу Вам принцип работы схемы реверса электродвигателя на специальном стенде.

В процессе эксплуатации трехфазного возникают моменты, когда необходимо изменить вращение вала электродвигателя. Чтобы осуществить задуманное, мы подключаем электродвигатель по схеме реверса.

Что нам для это потребуется?

  • Вводной питающий автомат — в данном примере я использовал автоматический выключатель марки АП-50 с номинальным током 4А
  • Контакторы или в количестве 2 штуки
  • Кнопочный пост с 3 кнопками (красная — «стоп», черные — «вперед», «назад»)
  • Асинхронный электродвигатель

В моем примере (видео) отсутствует тепловое реле и сам электродвигатель, т.к. данный стенд предназначался для тренировки для студентов колледжей по сборке схемы реверса электродвигателя без силовой части.

Перед тем, как перейти к реверсу электродвигателя рекомендую прочитать и досконально изучить следующие статьи:

  • (устройство, конструкция, принцип работы на примере ПМЛ-1100)
  • нереверсивного типа

А теперь перейдем к реверсу. Чтобы изменить вращение вала (направление) электродвигателя, необходимо изменить питающего напряжения.

Как это сделать?

Схема реверса электродвигателя

Хочу сразу заметить, что следует обращать внимание на уровень напряжение питания электродвигателя (380В или 220В) и напряжение катушек контакторов (380В и 220В).

Ниже смотрите еще 2 схемы реверса электродвигателя с разными номинальными напряжениями.

В моем примере уровень напряжения силовой цепи составляет 220(В), поэтому контакторы я использую с катушками, соответственно, на 220 (В).

Контакторы КМ1 и КМ2 используем для организации реверса электродвигателя. При срабатывании контактора КМ1 фазировка питающего напряжения будет различаться от фазировки при срабатывании контактора КМ2.

Управление катушками контакторов КМ1 и КМ2 осуществляется кнопками «стоп», «вперед» и «назад».

Давайте рассмотрим принцип работы схемы реверса электродвигателя.

Принцип работы схемы реверса

При нажатии кнопки «вперед» получает питание катушка контактора КМ1 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ2.2 контактора КМ2 - н.о. контакт нажатой кнопки «вперед» — катушка контактора КМ1 — фаза В.

Контактор КМ1 подтягивается и замыкает свои силовые контакты КМ1.1. Двигатель начинает вращаться в прямом направлении.

Кнопку «вперед» держать не нужно, т.к. катушка контактора КМ1 встает на «самоподхват» через свой же контакт КМ1.3.

Н.о. — нормально-открытый контакт, н.з. — нормально-закрытый контакт

Для остановки электродвигателя используем кнопку «стоп». Контактами этой кнопки мы разрываем питание катушки («самоподхват») контактора КМ1. Катушка КМ1 теряет питание и контактор КМ1 отпадывает, отключая электродвигатель от сети.

При нажатии кнопки «назад» получает питание катушка контактора КМ2 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ1.2 контактора КМ1 - н.о. контакт нажатой кнопки «назад» — катушка контактора КМ2 — фаза В.

Контактор КМ2 подтягивается и замыкает свои силовые контакты КМ2.1. Двигатель начинает вращаться в обратном направлении.

Кнопку «назад» держать не нужно, т.к. катушка контактора КМ2 встает на «самоподхват» через свой же контакт КМ2.3.

В этой схеме выполнена блокировка кнопок от одновременного нажатия, иначе в силовой цепи возникнет , которое приведет к повреждению электрооборудования. Блокировка выполняется последовательным включением н.з. контакта (блок-контакта) соответствующего контактора.

Силовая цепь схемы реверса электродвигателя снабжена защитным коммутационным вводным автоматическим выключателем АП-50 с номинальным током 4(А). Также желательно выполнить защиту и цепи управления, путем установки автоматических выключателей или предохранителей на фазу В и С.

В примере (видео) защита цепей управления отсутствует.

Существуют заводские сборные контакторы для схем реверса электродвигателя с механической блокировкой в виде перекидного рычажка, который блокирует одновременное включение контакторов.

В комментариях регулярно пишут, что в данной статье не в полном объеме раскрыта сборка схемы реверса. Исправляюсь и представляю Вашему вниманию пошаговую инструкцию по (переходите по ссылочке). Прочитав эту инструкцию, Вы самостоятельно соберете схему реверса электродвигателя.

P.S. Для более наглядного »живого» примера реверса электродвигателя я приготовил для Вас видео-ролик. Не судите строго. Это мое первое созданное видео на сайте. В дальнейшем буду стараться для каждой статьи добавлять видео-уроки.

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель - это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитны х пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях - и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение - цепь размыкается. Каждый контакт находится в дугогасительной специальной камере .

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей - или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых - устранить синхронное включение двух групп контактов - реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя - перемена направления вращения электродвигателя. Изменился порядок чередования фаз - поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор .

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том , что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами . Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1 , одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).

Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.

А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.

Вот так она выглядит.

Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.

Вот как раз таки в этой кнопке имеется две пары контактов:

  • (1-2) - нормально-разомкнутый
  • (3-4) - нормально-замкнутый

В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.

Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.

Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.

Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.

Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).

Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть

Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.

В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости - МБГО-1, 20 (мкФ), напряжение 500 (В).

Собираем схему.

В моем примере взят двигатель напряжением - 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.

Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.

Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).

Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).

Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.

Работу реверса смотрите в видеоролике:

P.S. На этом, пожалуй, все. Если у Вас возникли вопросы по материалу статьи, то пишите их в комментариях или мне на почту. Спасибо за внимание.

Если вы хотите почитать о реверсе тяги двигателя самолета, то я рекомендую обратить внимание на свежую статью на эту тему. Она написана 30.03.13 и располагается на этом сайте в той же рубрике под названием «Еще раз о реверсе тяги… Чуть подробнее… :-)», то есть . А эта статья (где вы сейчас находитесь) на мой взгляд уже не отвечает взыскательным запросам, как собственно моим, так и моих читателей. На сайте, однако, она останется, так что, если хотите, можете обратить внимание и на нее… Разве что для сравнения:-)…

Работа реверса при посадке А-321.

Проблема торможения самолета после посадки на пробеге была малозначимой наверное только на заре авиации, когда самолеты летали медленнее современных автомобилей и были значительно легче последних:-). Но в дальнейшем этот вопрос становился все более важным и для современной авиации с ее скоростями он достаточно серьезен.

Чем же можно затормозить самолет? Ну, во-первых, конечно тормозами, установленными на колесном шасси. Но дело в том, что если самолет имеет большую массу и садится с достаточно большой скоростью, то часто этих тормозов просто не хватает. Они бывают не в состоянии за короткий промежуток времени поглотить всю энергию движения многотонной махины. К тому же если условия контакта (трения) между шинами колес шасси и бетонной полосой не очень хорошие (например, если полоса мокрая во время дождя), то торможение будет еще хуже.

Однако, существуют еще два способа. Первый – это тормозной парашют . Система достаточно эффективная, но не всегда удобная в применении. Представьте себе какой нужен парашют, чтобы затормозить, например, огромный Боинг-747 , и какая должна быть парашютная служба в большом аэропорту, где самолеты садятся, можно сказать, валом:-).

Работа реверса (створки) на аэробусе А-319 компании JeasyJet.

Второй способ в этом плане значительно более удобен. Это реверс тяги двигателя на самолете. Принципиально это достаточно простое устройство, которое создает обратную тягу, то есть направленную против движения самолета, и тем самым его тормозит.

Устройство реверса на ТРД. Видны гидроцилиндры управления реверсивными створками

Реверс тяги могут создавать винтовые самолеты с изменяемого шага (ВИШ ). Это делается путем изменения угла установки лопастей винта в такое положение, когда винт начинает «тянуть» назад. А на реактивных двигателях это делается посредством изменения направления выходящей реактивной струи с помощью устройств реверса, чаще всего выполненных в виде створок, перенаправляющих реактивную струю. Так как нагрузки там многотонные, то створки эти управляются при помощи гидравлической системы.

Реверс на самолете Fokker F-100 компании KLM.

Основное применение реверса тяги – это торможение при пробеге. Но он может применяться и при экстренном торможении при необходимости прекращения взлета. Реже и не на всех самолетах этот режим может применяться при рулении на аэродроме для движения задним ходом, тогда отпадает необходимость в буксировщике. Очень характерен в этом плане шведский истребитель Saab-37 Viggen . Его эволюции можно посмотреть на ролике в конце статьи.

Истребитель Saab 37 Viggen.

Однако справедливости ради стоит сказать, что он чуть ли не единственный самолет, так легко разъезжающий задним ходом:-). И вообще реверс тяги на реактивных двигателях редко применяется на самолетах малого размера (). В основном он получил распространение на лайнерах коммерческой и гражданской авиации и на самолетах.

Стоит сказать, что на некоторых самолетах предусмотрено применение реверса тяги в полете (пример тому пассажирский самолет ATR-72 ). Обычно это возможно для экстренного снижения. Однако на такого рода режимы наложены ограничения и в обычной летной эксплуатации они практически не применяются.

Самолет ATR-72.

Самолета имеет, однако, при всех своих достоинствах и недостатки. Первое – это вес самого устройства. Для авиации вес играет большую роль и часто из-за него (а также из-за габаритов) устройство реверса не применяется на военных истребителях. А второе – это то, что перенаправленная реактивная струя при попадании на взлетную полосу и окружающий грунт способна поднимать в воздух пыль и мусор, который может попасть в двигатель и повредить лопатки компрессора . Такая опасность более вероятна при малых скоростях движения самолета (примерно до 140 км/ч ), при больших скоростях мусор просто не успевает долететь до воздухозаборника. Бороться с этим довольно сложно. Чистота взлетно-посадочной полосы (ВПП ) и рулежных дорожек – это вообще непроходящая проблема аэродромов, и о ней я расскажу в одной из следующих статей.

Самолет ЯК-42

Стоит сказать, что существуют самолеты, которые не нуждаются в устройствах реверса тяги реактивных двигателей. Это такие, как, например, российский ЯК-42 и английский BAe 146-200 . Оба имеют развитую механизацию крыла, значительно улучшающую их взлетно-посадочные характеристики. Особенно показателен в этом плане второй самолет. Он кроме механизации имеет хвостовые воздушные тормоза (щитки), позволяющие ему эффективно гасить скорость на снижении и после посадки на пробеге (вкупе с использованием интерцепторов). Надобность в реверсе отпадает, что делает этот самолет удобным к использованию в аэропортах, находящихся в черте города и поэтому чувствительных к шуму, а также имеющих крутую схему захода на посадку (например, Лондонский городской аэропорт).

Самолет BAe 146-200. Хорошо видны раскрытые тормозные щитки в хвосте.

Однако, такого рода самолетов все же не так много, а реверс тяги уже достаточно хорошо проработанная система, и без нее сегодня немыслима работа аэропортов.

В заключение предлагаю вам посмотреть ролики, в которых хорошо видна работа механизмов реверса. Видно, как реверсированная струя поднимает с бетонки воду. Ну и, конечно, «задний ход» SAABа:-). Смотреть лучше в полноэкранном варианте:-)..

Фотографии кликабельны.

Практически любой электродвигатель можно заставить вращаться как в одну, так и в другую сторону. Это часто необходимо, особенно при конструировании различных механизмов, например, систем закрывания и открывания ворот. Обычно на корпусе двигателя указывается заводское направление движения вала, которое считается прямым. Кручение в другую сторону в этом случае будет реверсивным.

Что такое реверс

Проще говоря, реверс - это изменение направления движения какого-либо механизма в противоположную сторону от выбранного основного. Схему реверса можно получить несколькими способами:

  • Механическим
  • Электрическим.

В первом случае при помощи переключения шестеренчатых связей, соединяющих ведущий вал с ведомым, добиваются вращения последнего в обратную сторону. По такому принципу работают все коробки передач.

Электрический способ подразумевает непосредственное воздействие на сам двигатель, где в изменении движения ротора принимают участие электромагнитные силы. Этот метод выигрывает тем, что не требует применения сложных механических преобразований.

Для того, чтобы получить реверс электродвигателя, необходимо собрать специальную электрическую схему, которая так и называется - схема реверса двигателя. Она будет отличаться для разных типов электрических машин и питающего напряжения.

Где применяется реверс

Легче перечислить случаи, когда реверс не используется. Практически вся механика построена на передаче крутящего момента по часовой стрелке и наоборот. Сюда можно отнести:

  • Бытовую технику: стиральные машины, аудиопроигрыватели.
  • Электроинструмент: реверсивные дрели, шуруповерты, гайковерты.
  • Станки: расточные, токарные, фрезерные.
  • Транспортные средства.
  • Спецтехнику: крановое оборудование, лебедки.
  • Элементы автоматики.
  • Робототехнику.

Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.

Подключение асинхронного мотора 380 В к в реверс

Схема подключения асинхронника в прямом направлении имеет определенную последовательность подачи фаз A, B, C на контакты двигателя. Ее возможно доработать, например, добавив переключатель, который бы менял местами любые две фазы. Таким способом можно получить схему реверса электродвигателя. В практических схемах такими фазами принято считать B и A.

Дополнительное оборудование:

  • типа (КМ1 и КМ2).
  • Станция на три кнопки, где два контакта имеют нормально разомкнутое положение (в исходном состоянии контакт не проводит ток, при нажатии на кнопку происходит замыкание цепи), один нормально замкнутый.

Схема работает следующим образом:

  • Включением автоматических предохранителей АВ1 (силовая линия), АВ2 (цепь управления) ток поступает на трехкнопочный переключатель и клеммы магнитных контакторов, которые в исходном состоянии разомкнуты.
  • Нажатием кнопки «Вперед» ток проходит на катушку электромагнита контактора 1, который притягивает якорь с силовыми контактами. Одновременно при этом происходит обрыв цепи управления контактора 2, его теперь невозможно включить кнопкой «Реверс».
  • Вал двигателя начинает вращаться в основном направлении.
  • Нажатием кнопки «Стоп» ток в цепи обмотки управления прерывается, электромагнит отпускает якорь, силовые контакты размыкаются, замыкается блокировочный контакт кнопки «Реверс», и ее теперь можно нажать.
  • При нажатии кнопки «Реверс» происходят аналогичные процессы только в цепи контактора 2. Вал двигателя будет вращаться в обратную сторону от основного направления.

Подключение мотора 220В к однофазной сети в реверс

Добиться реверса движения вала двигателя в этом случае возможно, если есть доступ к выводам его пусковой и рабочей обмоток. Эти моторы имеют 4 вывода: два на пусковую обмотку, подключенную с конденсатором, два на рабочую.

Если нет информации о назначении обмоток, ее можно получить методом прозвонки. Сопротивление пусковой обмотки всегда будет больше, чем рабочей за счет меньшего сечения провода, которым она намотана.

В упрощенном варианте схемы подключения мотора 220 В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети (без разницы). Двигатель начнет вращаться в определенную сторону. Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки.

Чтобы получить полную рабочую схему включения, необходимо оборудование:

  • Защитный автомат.
  • Пост кнопочный.
  • Электромагнитные контакторы.

Схема реверса и прямого хода в этом случае очень похожа на схему подключения трехфазного мотора, но коммутация здесь происходит не фаз, а пусковой обмотки в одном либо другом направлении.

Схема реверса трехфазного двигателя в однофазной сети

Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами - пусковым и рабочим, на которые коммутируют обе обмотки. От того, куда присоединить третью, зависит кручение вала в ту или иную сторону.

На схеме ниже видно, что обмотка под номером 3 через рабочий конденсатор подсоединяется к трехпозиционному тумблеру, который и отвечает за режимы работы двигателя вперед/назад. Два других его контакта объединены с обмотками 2 и 1.

При включении двигателя нужно придерживаться следующего алгоритма действий:

  • Подать питание на схему через вилку либо рубильник.
  • Тумблер для переключения режимов работы перевести в положение вперед или назад (реверс).
  • Тумблер питания поставить в положение ON (вкл).
  • Нажать кнопку «Пуск» на время, не превышающее трех секунд, чтобы произвести запуск двигателя.

Схема подключения двигателя с реверсом от постоянного тока

Моторы, работающие от постоянного тока, несколько сложнее подключить, нежели электрические машины переменной сети. Затруднение состоит в том, что конструкции таких устройств могут быть разными, а точнее разным является способ возбуждения обмотки. По этому признаку различают двигатели:

  • Независимого способа возбуждения.
  • Возбуждения самостоятельного (бывают последовательного, параллельного и смешанного подключения).

Касаемо первого типа устройств, то здесь якорь не связан с обмоткой статора, они питаются каждый от своего источника. Этим добиваются огромных мощностей двигателей, используемых на производстве.

В станочном оборудовании и вентиляторах применяют моторы параллельного возбуждения, где энергия источника одна для всех обмоток. Электрические транспортные средства построены на основе последовательного возбуждения обмоток. Реже встречается смешанное возбуждение.

Во всех описанных типах конструкций двигателей возможно запустить ротор в противоположном направлении от основного хода, то есть реверсом:

  • При последовательной схеме возбуждения роли не играет, где менять направление тока в якоре или статоре - в обоих случаях двигатель будет стабильно работать.
  • В других вариантах возбуждения машин рекомендовано задействовать только обмотку якоря в целях реверсирования. Это связано с опасностью обрыва в статоре, скачка электродвижущей силы (ЭДС) и, как следствие, повреждения изоляции.

Запуск мотора схемой звезда-треугольник

При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мотора по схеме звезда-треугольник.

Суть заключается в том, что начало и конец каждой обмотки статора выводят в коробку с клеммами. Управляется схема тремя контакторами. Они поэтапно включают обмотки в звезду, а далее при разгоне двигателя выводят систему на рабочее состояние при подключении треугольником.

Как отличить реверсивный пускатель от прямого

Более сложное устройство. На самом деле, он состоит из двух обычных прямых пускателей, последние объединены в одном корпусе. Внутренняя схемотехника реверсивного устройства характерна тем, что невозможно запустить одновременно два режима - прямой и реверс. За этот процесс отвечает схема блокировки, которая может быть электрической или механической.

В заключение

Необходимо помнить, что подключать двигатели трехфазного напряжения к сети на 380В дозволено только квалифицированным специалистам, имеющим допуск к работе с высоковольтным оборудованием. Кустарные электрические схемы могут быть причиной возникновения электрических травм!

Похожие публикации