Интернет-журнал дачника. Сад и огород своими руками

Структурные характеристики вариационного ряда распределения. Вычисление медианы набора чисел

Cреднее арифметическое значение (далее по тексту — среднее), пожалуй, наиболее популярный статистический параметр. Этим понятием пользуются повсеместно — начиная от поговорки «средняя температура по больнице» и кончая серьезными научными трудами. Однако, как ни странно, среднее значение — коварное понятие, часто вводящее в заблуждение, вместо того чтобы придавать четкость изложению и вносить ясность.

Если говорить о научной работе, то статистический анализ данных применяется почти во всех прикладных науках, даже и в гуманитарных (например, психологии). Среднее значение вычисляется для признаков, измеряемых в так называемых непрерывных шкалах. Такими признаками являются, например, концентрации веществ в сыворотке крови, рост, вес, возраст. Среднее арифметическое можно легко вычислить, и этому учат еще в средней школе. Однако (в соответствии с положениями математической статистики) среднее значение является адекватной мерой центральной тенденции в выборке только в случае нормального (гауссова) распределения признака (рис. 1). Рис. 1. Нормальное (гауссово) распределение признака в выборке. Среднее (М) и медиана (Ме) совпадают

В случае же отклонения распределения от нормального закона среднее значение использовать некорректно, так как оно является слишком чувствительным параметром к так называемым «выбросам» — нехарактерным для изучаемой выборки, слишком большим или слишком малым значением (рис. 2). В этом случае для характеристики центральной тенденции в выборке должен применяться другой параметр — медиана. Медиана — это значение признака, справа и слева от которого находится равное число наблюдений (по 50%). Этот параметр (в отличие от среднего значения) устойчив к «выбросам». Заметим также, что медиана может использоваться и в случае нормального распределения — в этом случае медиана совпадает со средним значением.

Рис. 2. Распределение признака в выборке, отличное от нормального. Среднее (м) и медиана (МЕ) не совпадают

Для того, чтобы узнать, является ли распределение признака в выборке нормальным (гауссовым) или нет, т. е. для того, чтобы узнать, какой из параметров следует применять (среднее значение или медиану), существуют специальные статистические тесты.

Приведем пример. Скорость оседания эритроцитов в группе пациентов, недавно перенесших пневмонию, — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение для этой выборки равно 17,8, медиана — 12. Распределение (по тесту Шапиро—Уилка) нормальным не является (рис. 3), поэтому использовать надо медиану. Рис. 3. Пример

Как ни странно, но в некоторых областях экономики сторонний наблюдатель не может заметить хоть какого-то следа корректного применения математической статистики. Так, нам постоянно говорят о средней зарплате (например, в НИИ), и эти числа обычно удивляют не только рядовых сотрудников, но и руководителей подразделений (ныне называемых «менеджерами среднего звена»). Мы удивляемся, что средняя зарплата в Москве — 40 тыс. руб., но, конечно, понимаем, что нас «усреднили» с олигархами. Вот пример из жизни научных работников: зарплаты сотрудников лаборатории (тыс. руб.) — 3, 5, 5, 7, 11, 12, 16, 16, 21, 42, 58. Среднее значение — 17,8, медиана — 12. Согласитесь, что это разные числа!

Конечно, нельзя исключить, что замалчивание свойств среднего — лукавство, так как руководству всегда выгоднее представить ситуацию с зарплатой сотрудников лучше, чем она есть на самом деле.

Не пора ли научному сообществу призвать наших руководителей прекратить некорректное использование математической статистики?

Ольга Реброва,
докт. мед. наук, вице-президент
МОО «Общество специалистов доказательной медицины»

Мода и медиана – особого рода средние, которые используются для изучения структуры вариационного ряда. Их иногда называют структурными средними, в отличие от рассмотренных ранее степенных средних.

Мода – это величина признака (варианта), которая чаще всего встречается в данной совокупности, т.е. имеет наибольшую частоту.

Мода имеет большое практическое применение и в ряде случаев только мода может дать характеристику общественных явлений.

Медиана – это варианта, которая находится в середине упорядоченного вариационного ряда.

Медиана показывает количественную границу значения варьирующего признака, которой достигла половина единиц совокупности. Применение медианы наряду со средней или вместо нее целесообразно при наличии в вариационном ряду открытых интервалов, т.к. для вычисления медианы не требуется условное установление границ отрытых интервалов, и поэтому отсутствие сведений о них не влияет на точность вычисления медианы.

Медиану применяют также тогда, когда показатели, которые нужно использовать в качестве весов, неизвестны. Медиану применяют вместо средней арифметической при статистических методах контроля качества продукции. Сумма абсолютных отклонений варианты от медианы меньше, чем от любого другого числа.

Рассмотрим расчет моды и медианы в дискретном вариационном ряду:

Определить моду и медиану.

Мода Мо = 4 года, так как этому значению соответствует наибольшая частота f = 5.

Т.е. наибольшее число рабочих имеют стаж 4 года.

Для того, чтобы вычислить медиану, найдем предварительно половину суммы частот. Если сумма частот является числом нечетным, то мы сначала прибавляем к этой сумме единицу, а затем делим пополам:

Медианой будет восьмая по счету варианта.

Для того, чтобы найти, какая варианта будет восьмой по номеру, будем накапливать частоты до тех пор, пока не получим сумму частот, равную или превышающую половину суммы всех частот. Соответствующая варианта и будет медианой.

Ме = 4 года.

Т.е. половина рабочих имеет стаж меньше четырех лет, половина больше.

Если сумма накопленных частот против одной варианты равна половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.

Вычисление моды и медианы в интервальном вариационном ряду

Мода в интервальном вариационном ряду вычисляется по формуле

где Х М0 - начальная граница модального интервала,

h м 0 – величина модального интервала,

f м 0 , f м 0-1 , f м 0+1 – частота соответственно модального интервала, предшествующего модальному и последующего.

Модальным называется такой интервал, которому соответствует наибольшая частота.

Пример 1

Группы по стажу

Число рабочих, чел

Накопленные частоты

Определить моду и медиану.

Модальный интервал , т.к. ему соответствует наибольшая частота f = 35. Тогда:

Хм 0 =6, 0 =35

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (средняя арифметическая) или максимальную частоту (мода), но и как некоторую отметку (определенный уровень анализируемого показателя), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. То есть половина исходных данных по своему значению меньше этой отметки, а половина – больше. Это и есть медиана . Мода и медиана — важные показатели, они отражают структуру данных и иногда используются вместо средней арифметической.

Итак, медианна – это уровень показателя, который делит некоторый набор данных на две равные половины. В качестве демонстрационного примера вновь обратимся к набору случайных чисел. Такое распределение при большом количестве значений в литературе описывается, как обыденное явление. Вот данные в виде рисунка.

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение. Поэтому посмотрим на ассиметричное распределение, и что там происходит с центральными нашими тенденциями.

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше (практика подобное предположение опровергает, ну да ладно). Но если в анализируемом процессе присутствует какой-то существенный и неконтролируемый фактор, то в наблюдениях могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану, что отчетливо видно на следующей гистограмме.

Медиана – это основная альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам). В этой статье рассказывается о том, как ведет себя средняя арифметическая при аномальных значениях и как с этим бороться, то есть как сделать ее менее зависимой от выбросов. Основные варианты – это увеличение числа наблюдений и/или устранение аномалий из аналитической выборки. Так вот, переход от средней арифметической к медиане – еще один способ получить устойчивую (робастную) оценку математичечского ожидания. Другое дело, что свойства средней арифметической будут навсегда потеряны, но тут надо смотреть, что важней.

Теперь примеры реального использования медианы в статистике. При анализе средней заплаты по стране вместо средней арифметической могут задействовать медиану. Народу не нравится, когда их собственная з/п оказывается ниже средней (арифметической) по стране. Это вызывает бурю эмоций и разоблачений в неправильных подсчетах. Мол, у меня зарплата 100 рублей, а у директора 1000 рублей, вот и получается в среднем по 550 рублей. Что такое , недовольным гражданам неведомо и не интересно. А вот если использовать медиану, то будет понятно, что половина населения получает доход меньше медианного значения, а половина – больше.

Этот показатель также применяется в демографической статистике, при анализе различных количественных и качественных характеристик (прочность материала, содержание элементов, время работы, количество отказов и проч.). Даже трейдеры на forex используют медиану, как некоторый секретный сигнал к началу действий. Хотя большинство из них это не спасает.

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объекта около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.). Логистам и на заметку.

{module 111}

Формула медианы для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медианна будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

№ Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана будет обозначаться, как

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

Так происходит поиск или расчет в дискретных данных. Однако данные могут быть еще и интервальными , где выбрать конкретное значение не представляется возможным, так как конкретных значений просто нет. Как и в моде, медиану в таком случае рассчитывают по некоторому общепринятому правилу, исходя из определенного предположения, то есть на глазок. И нормально получается, я вам скажу!

Для начала (после ранжирования данных) находят медианный интервал . Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Не мудрствуя лукаво, лучше обратимся к наглядной схеме – понятней будет.

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

где x Me - нижняя граница медианного интервала;

i Me - ширина медианного интервала;

∑f/2 - количество всех значений, деленное на 2 (два);

S (Me-1) - суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

f Me - число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%. Чем-то даже похоже на формулу моды. Отличие заключается в поиске точки внутри интервала.

Для примера рассчитаем медиану по следующим данным.

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров. Теперь еще раз посмотрим, что у нас имеется.

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Статистика без автоматических расчетов – прошлый век. Медиану чисел легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Используется архипросто. Активируется ячейка для расчета, вызывается функция, выбирается диапазон данных и «ОК». Больше и обсуждать нечего. Годится и для четного, и для нечетного количества данных.

Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Кстати, тот факт, что медиана делит данные на две равные части, напоминает о некоторых методах группировки. Действительно, после нахождения медианы, мы также получаем две группы с равным количеством значений. Развивая эту идею, деление на группы можно производить не только по принципу 50/50, но и по другим долям. Например, 20% наибольших значений есть не что иное, как группа А в ABC-анализе . О других долях как-нибудь в другой статье. Видите, как пересекаются, казалось бы, не связанные методы?

Подходит к концу мой рассказ о статистическом показателе медиана. Надеюсь, он был неутомительным. Напоследок предлагаю задачку в стиле телевикторины «Кто хочет стать миллионером?». Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Предлагаю также посмотреть видеролик на тему расчета медианы в Excel.

Наряду со средними величинами в качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана .
Мода (Mo) представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой, т.е. мода – значение признака, встречающееся чаще всего.
Медианой (Me) называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности, т.е. медиана – центральное значение вариационного ряда.
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины ∑|x i - Me|=min.

Определение моды и медианы по несгруппированным данным

Рассмотрим определение моды и медианы по несгруппированным данным . Предположим, рабочие бригады, состоящей из 9 человек, имеют следующие тарифные разряды: 4 3 4 5 3 3 6 2 6 . Так как в данной бригаде больше всего рабочих 3-го разряда, этот тарифный разряд будет модальным. Mo = 3.
Для определения медианы необходимо провести ранжирование: 2 3 3 3 4 4 5 6 6 . Центральным в этом ряду является рабочий 4-го разряда, следовательно, данный разряд и будет медианным. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.
Если мода отражает наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальному закону распределения совокупности. Проиллюстрируем ее познавательное значение следующим примером.
Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 200 долларов в месяц, а месячные доходы последнего составляют 50000 долларов (табл. 1).
Таблица 1 - Месячные доходы исследуемой группы людей. Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид (табл. 2).
Таблица 2 - Распределение рабочих предприятия по тарифному разряду

Расчет моды и медианы для дискретного ряда

Расчет моды и медианы для интервального ряд

Расчет моды и медианы для вариационного ряда

Определение моды по дискретному вариационному ряду

Используется построенный ранее ряд значений признака, отсортированных по величине. Если объем выборки нечетный, берем центральное значение; если объем выборки четный, берем среднее арифметическое двух центральных значений.
Определение моды по дискретному вариационному ряду : наибольшую частоту (60 человек) имеет 5-й тарифный разряд, следовательно, он и является модальным. Mo = 5.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда (N Me): , где n - объем совокупности.
В нашем случае: .
Полученное дробное значение, всегда имеющее место при четном числе единиц совокупности, указывает, что точная середина находится между 95 и 96 рабочими. Необходимо определить, к какой группе относятся рабочие с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Рабочих с этими номерами нет в первой группе, где всего лишь 12 человек, нет их и во второй группе (12+48=60). 95-й и 96-й рабочие находятся в третьей группе (12+48+56=116), следовательно, медианным является 4-й тарифный разряд.

Расчет моды и медианы в интервальном ряду

В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведения определенных расчетов на основе следующих формул:
, (5.6)
где x 0 – нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);
i – величина модального интервала;
f Mo – частота модального интервала;
f Mo -1 – частота интервала, предшествующего модальному;
f Mo +1 – частота интервала, следующего за модальным.
(5.7)
где x 0 – нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);
i – величина медианного интервала;
S Me -1 – накопленная интервала, предшествующего медианному;
f Me – частота медианного интервала.
Проиллюстрируем применение этих формул, используя данные табл. 3.
Интервал с границами 60 – 80 в данном распределении будет модальным, т.к. он имеет наибольшую частоту. Использую формулу (5.6), определим моду:

Для установления медианного интервала необходимо определять накопленную частоту каждого последующего интервала до тех пор, пока она не превысит половины суммы накопленных частот (в нашем случае 50 %) (табл. 5.11).
Установили, что медианным является интервал с границами 100 – 120 тыс. руб. Определим теперь медиану:

Таблица 3 - Распределение населения РФ по уровню среднедушевых номинальных денежных доходов в марте 1994г.
Группы по уровню среднедушевого месячного дохода, тыс. руб. Удельный вес населения, %
До 20 1,4
20 – 40 7,5
40 – 60 11,9
60 – 80 12,7
80 – 100 11,7
100 – 120 10,0
120 – 140 8,3
140 –160 6,8
160 – 180 5,5
180 – 200 4,4
200 – 220 3,5
220 – 240 2,9
240 – 260 2,3
260 – 280 1,9
280 – 300 1,5
Свыше 300 7,7
Итого 100,0

Таблица 4 - Определение медианного интервала
Таким образом, в качестве обобщенной характеристики значений определенного признака у единиц ранжированной совокупности могут быть использованы средняя арифметическая, мода и медиана.
Основной характеристикой центра распределения является средняя арифметическая, для которой характерно то, что все отклонения от нее (положительные и отрицательные) в сумме равняются нулю. Для медианы характерно, что сумма отклонений от нее по модулю является минимальной, а мода представляет собой значение признака, которое наиболее часто встречается.
Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. В симметричных распределениях все три характеристики совпадают. Чем больше расхождение между модой и средней арифметической, тем более асимметричен ряд. Для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней, т.е.:
|Mo –`x| = 3 |Me –`x|.

Определение моды и медианы графическим методом

Моду и медиану в интервальном ряду можно определить графически . Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Из точки их пересечения опускаем перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 5.3).


Рис. 5.3. Графическое определение моды по гистограмме.


Рис. 5.4. Графическое определение медианы по кумуляте
Для определения медианы из точки на шкале накопленных частот (частостей), соответствующей 50 %, проводится прямая, параллельная оси абсцисс до пересечения с кумулятой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Квартили, децили, перцентили

Аналогично с нахождением медианы в вариационных рядах распределения можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, например, можно найти значение признака у единиц, делящих ряд на четыре равные части, на 10 или на 100 частей. Эти величины называются «квартили», «децили», «перцентили».
Квартили представляют собой значение признака, делящее ранжированную совокупность на 4 равновеликие части.
Различают квартиль нижний (Q 1), отделяющий ¼ часть совокупности с наименьшими значениями признака, и квартиль верхний (Q 3), осекающий ¼ часть с наибольшими значениями признака. Это означает, что 25 % единиц совокупности будут меньше по величине Q 1 ; 25 % единиц будут заключены между Q 1 и Q 2 ; 25 % - между Q 2 и Q 3 , а остальные 25 % превосходят Q 3 . Средним квартилем Q 2 является медиана.
Для расчета квартилей по интервальному вариационному ряду используются формулы:
, ,
где x Q 1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25 %);
x Q 3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75 %);
i – величина интервала;
S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;
S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;
f Q 1 – частота интервала, содержащего нижний квартиль;
f Q 3 – частота интервала, содержащего верхний квартиль.
Рассмотрим расчет нижнего и верхнего квартилей по данным табл. 5.10. Нижний квартиль находится в интервале 60 – 80, накопленная частота которого равна 33,5 %. Верхний квартиль лежит в интервале 160 – 180 с накопленной частотой 75,8 %. С учетом этого получим:
,
.
Кроме квартилей в вариационных радах распределения могут определяться децили – варианты, делящие ранжированный вариационный ряд на десять равных частей. Первый дециль (d 1) делит совокупность в соотношении 1/10 к 9/10, второй дециль (d 1) – в соотношении 2/10 к 8/10 и т.д.
Вычисляются они по формулам:
, .
Значения признака, делящие ряд на сто частей, называются перцентилями. Соотношения медианы, квартилей, децилей и перцентилей представлены на рис. 5.5.

Число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана - это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4), подробнее см. .

Также медиану можно определить для случайных величин : в этом случае она делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2); более точное определение см. .

Можно также сказать, что медиана является 50-м персентилем , 0,5-квантилем или вторым квартилем выборки или распределения.

Свойства медианы для случайных величин

F (x) = 0.5 {\displaystyle F(x)=0.5}

Если распределение является непрерывной строго возрастающей функцией, то решение уравнения однозначно. Если распределение имеет разрывы, то медиана может совпадать с минимальным или максимальным (крайним) возможным значением случайной величины, что противоречит «геометрическому» пониманию этого термина.

Медиана является важной характеристикой распределения случайной величины и, так же как математическое ожидание , может быть использована для центрирования распределения. Поскольку оценки медианы более робастны , её оценивание может быть более предпочтительным для распределений с т. н. тяжёлыми хвостами . Однако о преимуществах оценивания медианы по сравнению с математическим ожиданием можно говорить только в случае, если эти характеристики у распределения совпадают, в частности, для симметричных функций плотности распределения вероятностей.

Медиана определяется для всех распределений, а в случае неоднозначности, естественным образом доопределяется, в то время как математическое ожидание может быть не определено (например, у распределения Коши).

Пример использования

Предположим, что в одной комнате оказалось 19 бедняков и один миллионер. У каждого бедняка есть $5, а у миллионера - $1 млн (10 6). В сумме получается $1 000 095. Если мы разделим деньги равными долями на 20 человек, то получим $50 004,75. Это будет среднее арифметическое значение суммы денег, которая была у всех 20 человек в этой комнате.

Медиана в этом случае будет равна $5 (полусумма десятого и одиннадцатого, срединных значений ранжированного ряда). Можно интерпретировать это следующим образом. Разделив нашу компанию на две равные группы по 10 человек, мы можем утверждать, что в первой группе у каждого не больше $5, во второй же не меньше $5. В общем случае можно сказать, что медиана это то, сколько принёс с собой «средний» человек. Наоборот, среднее арифметическое - неподходящая характеристика, так как оно значительно превышает сумму наличных, имеющуюся у среднего человека.

Похожие публикации