Интернет-журнал дачника. Сад и огород своими руками

Тиристорный регулятор яркости настольной лампы. Регулировка яркости LED. Все о диммерах для светодиодных ламп Китайский регулятор напряжения для настольной лампы схема

Так выглядит диммер для ламп накаливания

В этой статье рассмотрим устройство, которое продается в магазинах электротоваров, как регулятор яркости ламп накаливания. Речь идет о диммере . Название произошло от английского глагола “to dim” – темнеть, становиться тусклым. Иначе говоря, диммером можно регулировать яркость лампы накаливания.

При этом замечательно то, что и потребляемая мощность уменьшается пропорционально. Хотя применений у диммера гораздо больше, о чём поговорим в конце статьи.

Простейшие диммеры имеют одну поворотную ручку для регулировки, и два вывода для подключения, и используются для регулировки яркости ламп накаливания и галогенных ламп. В последнее время появились диммеры и для регулировки яркости люминесцентных ламп.

Фактически димер представляет собой выключатель с регулятором яркости, который можно просто подключить вместо клавишного выключателя. Но об этом чуть позже.

Ранее для регулировки яркости ламп накаливания использовались реостаты, мощность которых была не меньше мощности нагрузки. При чем при понижении яркости оставшаяся мощность никак не экономилась, а рассеивалась бесполезно в виде тепла на реостате. При этом никто не говорил о экономии, её просто не было. А использовались такие устройства там, где действительно было нужно только регулировать яркость – например, в театрах.

Так было до появления замечательных полупроводниковых приборов – динистора и симистора (симметричного тиристора). В англоязычной практике приняты другие названия – диак и триак . Эти названия почти вошли и в российскую электронную действительность.

Схема подключения диммера

Схема включения диммера до невозможности простая – проще не придумаешь. Он включается так же, как и обычный выключатель – в разрыв цепи питания нагрузки, то есть лампы. По установочным габаритам и креплению диммер идентичен выключателю. Поэтому установить его можно так же, как выключатель – в монтажную коробку, и установка диммера не отличается от установки обычного выключателя.

Учебник физики за 5-й класс… Но это для последовательности изложения.

Как подключить диммер вместо выключателя

В последнее время люди всё чаще меняют обычные выключатели на диммеры. Поменять выключатель на диммер очень просто. У выключателя два выхода (две клеммы), у диммера тоже две клеммы. Просто подключаем диммер вместо выключателя, используя те же провода, что подключались к выключателю.

Полярность никакой роли не играет. Однако, если с помощью фазового указателя (отвертки-индикатора) вы определили, где фаза, то лучше фазный проводник подключить на клемму L диммера. Просто для порядка.

Включение лампочки через диммер

Единственное условие, которое предъявляет производитель – соблюдать подключение выводов к фазе и к нагрузке. Хотя, как показывает практика, на этом можно не заморачиваться – всё работает хорошо при любом подключении.

Если раньше люстра включалась через двухклавишный выключатель, то через димер все лампочки будут загораться (светиться) одновременно. На одну клемму диммера сажаем фазу, на вторую – два остальных провода.

Виды диммеров

Все диммеры, которые сейчас есть в продаже, можно разделить на 2 группы – поворотные (с регулятором – потенциометром) и электронные, с управлением с помощью кнопок.

При регулировании (диммировании) ручкой потенциометра яркость зависит от угла поворота. И один поворотный димер работает как один выключатель, больше от него добиться невозможно. Я говорю о проходных переключателях, параллельном-последовательном включении, и т.п. Мой не совсем удачный опыт описан на СамЭлектрик в статье .

Кнопочный диммер в смысле гибкости управления более гибок. Можно подключить несколько кнопок в параллель, и управлять диммером из любого количества мест. Конечно, это теоретически, на практике количество мест управления ограничивается 3-4, а максимальная длина проводов – около 10 метров, причем схема может быть критична к помехам и наводкам. Существует также дистанционные диммеры, управляемые по радио- или инфракрасному каналу.

Цена у диммеров с регулятором и с кнопками отличается на порядок, ведь кнопочный диммер (например, диммер Legrand) как правило собран с применением микроконтроллера. Поэтому гораздо более распространены поворотные диммеры , которые мы и рассмотрим ниже.

Существуют также промышленные разновидности диммеров в виде твердотельных реле с управлением резистором, такой вид диммера рассмотрен в статье .

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Устройство диммеров для ламп накаливания

Вот несколько фото конструкций поворотных диммеров.

Устройство диммера Gunsan

Диммер Gunsan – вид со стороны пайки

Устройство диммера Makel

Устройство диммера Makel – вид со стороны пайки

Как видно, устройство диммера весьма простое, но может отличаться у разных производителей. При этом основная разница – в качестве сборки и комплектующих.

Схема диммера на симисторе

Схема симисторных регуляторов яркости в основном везде одинакова, отличается только наличием дополнительных деталей для более устойчивой работы на низких “выходных” напряжениях и для плавности регулирования. Также в схему вводятся детали для снижения уровня помех, выдаваемых димером в сеть.

Схема димера простейшая

Принцип действия схемы таков. Чтобы лампа загорелась, надо чтобы симистор пропустил через себя ток. Это случится, когда между электродами симистора А1 и G появится определенное напряжение (какое – смотри в даташите, можно скачать внизу статьи). Вот как оно появляется.

При начале положительной полуволны конденсатор начинает заряжаться через потенциометр R. Понятно, что скорость заряда зависит от величины R. Умными словами, потенциометр меняет фазовый угол. Когда напряжение на конденсаторе достигнет величины, достаточной для открытия симистора и динистора (см. даташит на динистор), симистор открывается. Иначе говоря, его сопротивление становится очень мало, и лампочка горит до конца полуволны.

То же самое происходит и с отрицательной полуволной, поскольку диак и триак – устройства симметричные, и им все равно, в какую сторону течет через них ток.

В итоге получается, что напряжение на активной нагрузке представляет собой “обрубки” отрицательных и положительных полуволн, которые следуют друг за другом с частотой 100 Гц. На низкой яркости, когда лампа питается совсем короткими “кусочками” напряжения, заметно мерцание. Чего совсем не скажешь про реостатные регуляторы и регуляторы с преобразованием частоты.

При максимальном сопротивлении резистора R1 будет минимальное горение лампы, поскольку симистор будет открываться в конце полуволны, или вообще не откроется.

Альтернативное использование диммера

То, что диммер может только регулировать яркость ламп накаливания – узколобость маркетологов, у него гораздо больше применений.

Диммер – это не только регулятор освещения, его можно использовать как регулятор напряжения вообще, подключая через него любую активную нагрузку – лампу накаливания, паяльник, чайник, утюг. Но главное – максимальная мощность диммера (другими словами – максимальный ток симистора) должна соответствовать нагрузке.

Не факт, что нагрузка при этом будет вести себя адекватно, и не будет подвергаться опасности выйти из строя. Например, попробуйте диммировать свой телевизор) Нет, лучше не надо!

Кроме того, можно например регулировать температуру теплых полов. При этом отпадает необходимость в покупке температурного регулятора, который стоит в 3-5 раз дороже.

Минус – нет обратной связи и защиты от перегрева, но это во многих случаях терпимо. Ведь от люстры тоже нет обратной связи – только через глаза. А от теплого пола – через ноги, не так ли? Ставил диммеры на теплые полы, работают прекрасно много лет.

Симисторы для диммеров. Мануалы

Подобрать симистор для ремонта или увеличения мощности диммера можно по этим даташитам:

/ Даташит, pdf, 183.12 kB, скачан:8909 раз./

/ Даташиты, pdf, 150.55 kB, скачан:11792 раз./

Рассмотрение принципа работы диммера на видео

Товарищ очень толково рассказывает об устройстве диммера:

Тиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 - 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на . Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Рисунок 2.

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали - отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод - катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего - лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности . Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов . При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно - параллельное включение тиристоров, или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Рисунок 6.

Диммирование с английского языка переводится не иначе, как «затемнение». Что такое диммер, какие они бывают и где еще могут применяться мы расскажем в этой статье. От истоков и до конечной реализации. Самый главный вопрос можно ли использовать светодиодные лампы с диммером?

Что такое диммер и зачем он нужен?

Диммер – электронный прибор способный регулировать мощность, за счёт регулирования напряжения, поступающего к нагрузке. Определение весьма сухое и скучное, давайте более простым языком объясним принцип действия.

Мощность зависит от напряжения и тока в нагрузке. Это значит, что если уменьшить одну из составляющих уменьшиться и мощность. Напряжение и ток связаны законом Ома, а значит уменьшить мощность вашего прибора (яркость светильника) можно, увеличив общее сопротивление нагрузки. То есть использовать балластные резисторы, дроссели или конденсаторы.

Балластные гасители мощности – преобразуют лишнюю энергию в тепло и имеют низкий КПД. Чтобы регулировать мощность прибора, в нашем случае яркость лампочки, нужно другое устройство – диммер.

Можно ли подключать светодиодные лампы через диммер? Можно. Но не все будут стабильно регулироваться. Тут нужны специальные светодиодные лампы под диммер.

Светодиодные лампы, регулируемые диммером, подойдут для работы с любым регулятором. Но есть некоторые нюансы в отличии типа регулировки напряжения. Это определяется схемотехникой диммера, различия будут подробно описаны в следующих разделах статьи. От типа диммера зависит насколько хорошо будут регулироваться LED.

Какие светодиодные лампы можно использовать с диммером? В этом вопросе всё крайне индивидуально. Все зависит как от схемы самой лампочки, так и от схематики регулятора. В общем случае – отлично подходят так называемые диммируемые светодиодные лампы .

Какие бывают диммеры

Регуляторы мощности можно разделить на две больших группы:

  • Для работы в цепях переменного напряжения (220В);
  • для работы в цепях постоянного напряжения (для светодиодной ленты на 12В).

В дрелях тоже нужен регулятор, для корректировки оборотов, он располагается в кнопке.

Его можно использовать в различных целях, в этом списке они расположены по популярности:

  1. Регулировка яркости света, диммирование светодиодных и ламп накаливания;
  2. регулировка температуры тэна в различных нагревателях;
  3. регулировка оборотов коллекторного двигателя.

В чем различия диммеров?

Если вы собрались использовать выключатель с регулировкой яркости, сперва нужно узнать какие они бывают. И вообще все ли светодиодные лампы можно диммировать?

Диммеры различаются по следующим критериям:

  • По типу монтажа;
  • по исполнению и способу управления;
  • по способу регулирования.

Давайте разберемся по подробнее с каждым из них.

По типу монтажа

Для наружного монтажа – накладной выключатель с диммером для светодиодных ламп. Для установки такого прибора не нужно высверливать в стене нишу, он просто крепится сверху на стену. Очень удобно использовать в тех случаях, когда интерьер не в приоритете или проложена наружная проводка.

Для внутреннего монтажа – отлично впишутся в любой интерьер, как например этот.

Для монтажа на DIN рейку весьма специфичны и сперва может показаться, что они не практичны. Однако этот регулятор освещения для светодиодных ламп работает с пультом дистанционного управления, при этом спрятан от посторонних глаз в электрощите.

По исполнению

По исполнению регулятор света для светодиодных и ламп накаливания может быть:

  • Поворотным;
  • поворотно-нажимного типа;
  • кнопочным;
  • сенсорным;

Поворотный – один из самых простых вариантов регулятора яркости светодиодной лампы, выглядит незатейливо обладает простейшим функционалом.

Поворотно-нажимной выглядит практически также, как и поворотный. Благодаря своей конструкции, при нажатии на него зажигается свет с такой яркостью, какая была установлена при последнем включении.

Кнопочный регулятор для светодиодного освещения выглядит уже более технологично и органично впишется в современную квартиру. Как например этот выключатель с регулятором яркости для светодиодных ламп.

Сенсорные модели и вовсе могут быть совершенно различны – начиная от светящихся кружочков, заканчивая ровными одноцветными панелями для регулировки напряжения светодиодных ламп.

По способу регулировки

Диммеры бывают разные не только по их исполнению, но и по принципу работы. Э то касается именно диммеров переменного тока.

Первый тип диммеров более распространённый и дешевый, по причине простоты своей схемы – это диммер с отсечкой по переднему фронту (англ. leading edge ). Немного дальше будет подробно рассмотрен его принцип работы и схема, для сравнения взгляните на вид напряжения на выходе такого регулятора.

По графику видно, что на нагрузку подается остаток полуволны, а её начало срезается. Из-за характера включения нагрузки, в электросетях наводятся помехи, что мешает работе телевизоров и других устройство. На лампу подаётся напряжение установленной амплитуды, а затем оно затухает, когда синусоида переходит через ноль.

Можно ли использовать leading edge диммер для диодных ламп? Можно. Светодиодные лампы с диммером этого типа будут хорошо поддаваться регулировке, только если они изначально для этого созданы. Об этом свидетельствуют символы на её упаковке. Они еще называются «диммируемые».

Второй тип работает иначе, создает меньше помех и лучше работает с разными лампочками – это диммер с отсечкой по заднему фронту (англ. falling edge ).

Регулировка светодиодных ламп с диммерами такого типа происходит лучше, а его конструкция лучше поддерживает недиммируемые источники света. Единственный недостаток – эти лампы могут регулировать свою яркость не с «нуля», а в определенном диапазоне. При этом диммируемые светодиодные лампы – просто великолепно регулируются.

Лучшее решение — использовать Falling Edge диммер для светодиодных светильников.

Отдельное слово можно сказать о готовых светодиодных светильниках с регулировкой яркости. Это отдельный класс осветительных устройств, которые не нуждаются в установке дополнительных регуляторов, а имеют его в своей конструкции. Их регулировки производятся с помощью кнопок на корпусе или с пульта.

Схемы диммеров

Диммер для напряжения 220В, с отсечкой по переднему фронту, работает по принципу фазоимпульсного управления напряжением. В процессе работы, элементы такого диммера подают напряжение на нагрузку в определенные моменты, отрезая часть синусоиды. Подробно и более наглядно это изображено на графиках.

Площадь синусоиды, заштрихованная серым цветом – это площадь напряжения или его действующая величина, которая подаётся в нагрузку (светильник или любое другое описанное выше устройство).

Красной пунктирной линией изображена форма напряжения на входе диммера для led ламп. В таком виде она подается через обычный выключатель без регулировок.

Как подключить светодиоды через диммер?

Номиналы компонентов и все сведения указаны на схеме диммера.

Устройство устанавливается в разрыв провода идущего к источнику света, двигателю, тэну или любому другому устройству.

Логика работы схемы следующая: конденсатор С1 заряжается через цепочку R1 и потенциометр R2. В зависимости от положения потенциометра, конденсатор заряжается до напряжения открытия динистора VD1.

В схеме использовался динистор DB3, это примерно 30В. Через открытый динистор подаётся управляющий импульс открытия симистора (двунаправленный тиристор), на его управляющий электрод.

Чем больше сопротивление, выставленное ручкой потенциометра – тем дольше заряжается конденсатор, соответственно тем позже откроется цепь динистор-симистор, а напряжение будет ниже, так как срежется большая часть синусоиды. И наоборот – меньше сопротивление – больше напряжение на выходе регулятора.

В интернете есть много вариантов схем со всевозможными доработками, все они хорошие. Здесь приведена простейшая схема, на рисунке изображен монтаж этого варианта схемы.

Как регулировать освещенность LED

Какие лампочки можно использовать с диммером? Когда для освещения использовались преимущественно лампы накаливания, всё было просто – обычный диммер легко справлялся с регулировкой яркости.

Лампы накаливания были заменены энергосберегающими люминесцентными экономками, их вообще нельзя было регулировать. Конечно, встречались ЭПРА для трубчатых люминесцентных лампочек с возможностью диммирования, но крайне редко и стоили они дорого.

Сейчас энергосберегающие лампы вытесняются светодиодными. Процесс излучения квантов света хоть и сложен, но с точки зрения регулирования, пожалуй, более прост, чем регулировка газоразрядных источников света.

Диммируемые светодиодные лампы – что это такое?

Что значит диммируемая светодиодная лампа? Это лампочка, которая поддаётся регулировке яркости с помощью ЛЮБОГО диммера, который разработан под переменный или постоянный ток (в зависимости от типа).

В ее схему питания заложены функции изменения яркости, в зависимости от питающего напряжения. Диммируемые светодиодные лампы работают со схемами диммеров типа того, что представлена выше.

Сетевой диммер регулирует подаваемое напряжение. Это значит, что при любых значениях напряжений, в определенном производителем диапазоне (он указан на коробке от лампочки), схема лампы будет стремиться поддерживать заданный ток. Яркость в свою очередь зависит от тока.

Обычные светодиодные лампы регулировать не получится, в лучшем случае она будет просто включаться и выключаться, в худшем — сгорит при низких значениях, установленных на диммере.

В самых дешевых светодиодных лампах стоит гасящий конденсатор. Они если и будут регулироваться, то только в очень узких пределах, значит они тоже не подходят. Пример диммирования обычных светодиодных лампочек посмотрите на видео.

Диммируемые светодиодные лампы на 220 Вольт

Регулировка яркости светодиодных ламп на 220В затруднена, потому что там установлена схема стабилизации тока на специализированном драйвере. Его задача стабилизировать выходной ток, для обеспечения равномерного и долгого свечения светодиодов, не зависимо от значений напряжения питающей сети.

Обычные светодиодные лампы не очень сильно поддаются диммированию. Чтобы выбрать правильную Led лампу для диммера – нужно внимательно изучить описание и обозначения, указанные на коробке и корпусе лампочки.

Светодиодные лампы с диммированием можно распознать по надписи: «для диммера», «регулируемая» или что-то подобное, возможно будет просто нарисовано условное изображение диммера, как на примерах ниже.

Можно ли регулировать яркость светодиодных ламп, работающих от постоянного тока?

На фото led диммер для 12В светодиодной ленты. Давайте разбираться как работает такой диммер со светодиодными лампами.

Для цепей постоянного тока принцип работы регулятора отличается. Здесь в качестве дозирующего элемента используется биполярный или полевой транзистор, а в качестве дозатора – генератор импульсов с изменяемым коэффициентом заполнения.

Способ этого управления называется широтно-импульсная модуляция (ШИМ). Чтобы понять, как это работает нужно ознакомиться с графиками.

Vcc – напряжение на входе диммера постоянного тока, Vсреднее – напряжение на выходе. Вы можете видеть, как изменяется среднее напряжение. При увеличении длительности импульса и сокращении длины паузы (повышаем коэффициент заполнения) увеличивается выходное напряжение.

Выше приведена принципиальная электрическая схема «ШИМ-регулятора яркости led ламп на NE555». Он может выступать в роли устройства для диммирования светодиодов. Работает следующим образом:

NE555 – это таймер, подключен здесь в режиме генератора импульсов, частота и длительность которых задаётся RC цепью состоящей из R2, потенциометра R1 и конденсатора C5, как и в предыдущей схеме потенциометр регулирует скорость заряда конденсатора, в соответствии со скоростью заряда формируется ширина импульса.

Изначально схема выдает симметричные импульсы, то есть длина паузы равна длине импульса. Но благодаря наличию потенциометра и цепочки из двух диодов VD1 и VD2, происходит заряд и перезаряд ёмкости через разные сопротивления потенциометра, вернее через разные пары его контактов.

Поэтому формируются ШИМ регулируемые импульсы с постоянной частотой, но изменяемым коэффициентом заполнения.

Если вы будете использовать его в автомобиле или для диммирования светодиодной ленты, можно исключить дополнительный источник питания 9 вольт, на базе 7809 линейного стабилизатора и подавать питание в первую точку после него на схеме.

А вот фотографии самодельного диммера для светодиодов, если нужно – вы можете срисовать расположение дорожек и повторить его. Или собрать на макетной плате.

Видео того как работает диммирование светодиодных светильников с помощью этой схемы, на примере ленты бокового свечения расположено ниже.


С помощью этой схемы возможно диммирование светодиодных цепей на 12В и любой другой нагрузки постоянного тока. Например, регулировать скорость оборотов кулера для ПК, коллекторных двигателей, нагревателей, в общем всего, что вы придумаете. В одной из статей мы уже рассказывали про .

Какой диммер нужен для светодиодных лампочек?

Чтобы подобрать диммер к светодиодным лампам и обеспечить их совместимость, нужно сначала определится, какие лампы вы будете использовать. Если вы планируете покупать 220В LED лампочки – для этого подойдут фазоимпульсные приборы, которые были рассмотрены в начале статьи. Берите модели с отсечкой по заднему фронту.

Для низковольтных ламп постоянного тока (например 12В, которые используются в точечных светильниках, настольном освещении или лампах для автомобиля) – подойдет любой ШИМ регулятор или диммер для светодиодных лент. Все они работают по принципу широтно-импульсной модуляции, линейное регулирование уже далеко в прошлом.

Также лучше покупать специальные светодиодные лампы под диммер. Хоть и стоят они дороже, но проблем с их регулировкой не будет. Вы создадите нужное световое решение, только если правильно подберете диммер и светодиодные лампы к нему.

Делитесь в комментариях своим опытом регулировки яркости светодиодов и светодиодных светильников!

Не смотря на то, что лампы накаливания вымирающий вид:) Пока лампочки Ильича ещё выпускают, их можно пускать в ход, и применять как в быту так и в радиолюбительской практике. Какой бы мощности не была бы лампочка в настоль­ной лампе у радиолюбителя, её свечением можно управлять.

Для того что бы каждый раз не ввинчивать, вывинчивать разные лампочки если вам необходимо разная мощность 40 Вт, 60 Вт, 75 Вт, или все 100 Вт. Можно воспользоваться очень простым приспособлением - регулятором напряжения на тиристоре рисунок №1.

Рисунок №1 – Схема тиристорного регулятора

S1 – Выключатель
FU1 – Плавкий предохранитель рассчитанный на ток 1-2 А
C1 – Конденсатор электролитический 5 Микрофарад на 300 Вольт
VD1 – КД105Г
VD2 – КУ201В (КУ201Б) или аналоги подходящие по характеристикам
R1 – резистор (подбирается) 39 – 47 К на 1 Вт.
R2 – Переменный резистор 47 К на 1 Вт.

Два левых (входных) контакта предназначены для включения в сеть питания 220 В при помощи обычной вилки, к двум правым подключается непосредственно настольная лампа.
Не пренебрегайте требованиями к технике безопасности, потому что практически все элементы схемы прямо (гальванически) связаны с силовой сетью напряжением 220 В, и могут представлять прямую угрозу для жизни.
Рекомендую всё основное изделие спрятать в диэлектрический корпус исключающий прикосновение к токоведущим частям.

Подбор элементов для тиристорного регулятора яркости:

Начнем с регулятора яркости. Возможны два принципиально разных решения. Можно применить потенциометр с так назы¬ваемым выключателем сети, и тогда отпадает необходимость в отдельном вы-ключателе S1. Такими потенциометрами являются ТК и ТКД. Они должны быть с линейной зависимостью (кривая «А»). Особое внимание обратим на декоративную ручку, которая будет надета на ось потенциометра.

Если же мы решим оставить «штатный» выключатель на самой лампе, тогда можно применить практически любой другой тип потенциометра (но также обяза¬тельно с кривой «А»).

VD2 – незапираемый тиристор типа КУ201 с напряжением включения 50 В, но впол¬не можно использовать, (нет никакого смысла применять тиристор, напряжение открывания которого 300, 600 или 1000 В. Такой тиристор просто не откроется при напряжении сети 220 В) на пример тиристор типа КУ101Б с таким же напряжением тоже подходит. Важно лишь, чтобы максимально допустимый ток через него был не меньше тока, протекающего через лампочку. А он легко определяется по величине мощ-ности лампочки. Например, для лампочки мощностью 100 Вт при напряжении сети 220 В номинальный ток составит 100/ 220= 0.45 А. На такой же ток должен быть рассчитан и диод VD1 при допустимом обратном напряжении не менее 250 В. Таким же во избежание случайностей лучше выбрать и рабочее напряжение для конденсатора С1. Номинальный ток предохранителя FU1 должен быть не меньше 1 А и не больше 2 А.
Главное при сборке не пренебрегайте правилами техники безопасности и грамотно подбирайте элементы схемы.

Недостаток схемы тиристорного регулятора яркости:

Не смотря на свою простоту, схема имеет существенный недостаток – это мерцание лампы, так что не торопитесь её делать, ещё есть масса полезных схем регулировки, которые я постараюсь выложить на страницах нашего сайта.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт

Здесь мы рассмотрим самый популярный среди самодельиков и китайских производителей простой переменного тока - так называемый "диммер ", который используется для контроля питания резистивной нагрузки, такой как лампы накаливания или нагревательные элементы (утюга, плиты, тепловентилятора, паяльника и т.д.). Максимальная нагрузка, которую он может обрабатывать, составляет 400 ватт. Такая схема очень часто встречается даже в промышленных регуляторах и доказала свою эффективную работу при номинальной мощности.

Электрическая схема регулятора яркости

Список деталей регулятора яркости

  • R1 3.9K - 0,25 ватт
  • R2 470K линейный потенциометр
  • C1 33 нФ / 400V конденсатор
  • C2 100 нФ полиэстеровый конденсатор
  • L1 20 витков 0.8 мм эмаль-провода на 4 мм ферритовом сердечнике
  • D1 DB4 динистор
  • T1 BTA10-400B тиристор
  • радиатор для T1
  • PCB винтовые клеммы

Схема работает по принципу контроля фазы переменного тока 220 В позволяя подключать нагрузку на разных участках сетевой синусоиды. Подробнее смотрите на графики - сверху слабая моность (регулятор на минимум), а снизу средняя (регулятор на середину шкалы).

Регулировка осуществляется потенциометром R2, который контролирует время, необходимое для заряда C2 через R1-R2. Ёмкость C2 заряжается до тех пор, пока не достигнет напряжение пробоя динистора D1, который затем открывает кратковременно T1. После того, как тиристор приоткрылся - нагрузка получает электрическую энергию. Компоненты L1 и C1 работают как фильтр подавления помех.



Схема регулятора яркости ламп накаливания напрямую подключена к электросети, так что смертельно опасное напряжение присутствует на всех элементах платы. Берегите себя. Соответственно и потенциометр должен иметь пластиковую рукоятку, чтобы обеспечить достаточный уровень изоляции 220 В.

Похожие публикации