Интернет-журнал дачника. Сад и огород своими руками

Пожарная пена. Пенообразователь. Кратность пожарной пены. Вмп состоит из Пена низкой средней высокой кратности

МЕТОДИКА РАСЧЕТА УСТАНОВОК ПОЖАРОТУШЕНИЯ ВОДОЙ, ПЕНОЙ НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ

1. Исходными данными для расчета установок являются параметры, приведенные в п. 4.2.

2. В зоне приемки, упаковки и отправки грузов складских помещений с высотным стеллажным хранением при высоте помещения от 10 до 20 м значения интенсивности и площади для расчета расхода воды, раствора пенообразователя по группам 5, 6 и 7, приведенные в п. 4.2, должны быть увеличены из расчета 10 % на каждые 2 м высоты.

3. Диаметры трубопроводов установок следует определять гидравлическим расчетом, при этом скорость движения воды и раствора пенообразователя в трубопроводах должна составлять не более 10 м/с.

Диаметры всасывающих трубопроводов установок следует определять гидравлическим расчетом, при этом скорость движения воды в трубопроводах должна составлять не более 2,8 м/с.

4. Гидравлический расчет трубопроводов следует выполнять при условии водоснабжения этих установок только от основного водопитателя.

5. Давление у узла управления должно быть не более 1,0 МПа.

6. Расчетный расход воды, раствора пенообразователя , л  с -1 , через ороситель (генератор) следует определять по формуле

где – коэффициент производительности оросителя (генератора), принимаемый по технической документации на изделие; – свободный напор перед оросителем (генератором), м вод. ст.

7. Минимальный свободный напор для оросителей (спринклерных, дренчерных) с условным диаметром выходного отверстия:

d y = 8...12 мм – 5 м вод. ст.,

d y = 15...20 мм – 10 м вод. ст.

8. Максимальный допустимый напор для оросителей (спринклерных, дренчерных) 100 м вод. ст.

9. Расход воды, раствора пенообразователя необходимо определять произведением нормативной интенсивности орошения на площадь для расчета расхода воды, раствора пенообразователя, (см. таблицы 1–3, раздел 4).

Расход воды на внутренний противопожарный водопровод должен суммироваться с расходом воды на автоматическую установку пожаротушения.

Необходимость суммирования расходов воды, раствора пенообразователя спринклерной и дренчерной установок определяется технологическими требованиями.

Таблица 1

Диаметр условного прохода, мм

Диаметр наружный, мм

Толщина стенки, мм

Значение k 1

Cтальные электросварные

(ГОСТ 10704-91)

Стальные водогазопроводные

(ГОСТ 3262-75)

Примечание. Трубы с параметрами, отмеченными знаком *, применяются в сетях наружного водоснабжения.

10. Потери напора на расчетном участке трубопроводов , м, определяются по формуле

где – расход воды, раствора пенообразователя на расчетном участке трубопровода, л  с -1 ; – характеристика трубопровода, определяется по формуле

где – коэффициент, принимается по таблице 1; – длина расчетного участка трубопровода, м.

Потери напора в узлах управления установок , м, определяются по формуле

где – коэффициент потерь напора в узле управления, принимается по технической документации на клапаны; – расчетный расход воды, раствора пенообразователя через узлы управления, л  с -1 .

11. Объем раствора пенообразователя , м 3 , при объемном пожаротушении определяется по формуле

где – коэффициент разрушения пены, принимается по таблице 2; – расчетный объем защищаемого помещения, м 3 ; – кратность пены.

Таблица 2

Горючие материалы защищаемого производства

Коэффициент разрушения пены

Продолжительность работы установки, мин

Число одновременно работающих генераторов пены 1 определяется по формуле

где – производительность одного генератора по раствору пенообразователя, м 3  мин -1 ;

– продолжительность работы установки с пеной средней кратности, мин, принимается по таблице 2.

12. Продолжительность работы внутренних пожарных кранов, оборудованных ручными водяными или пенными пожарными стволами и подсоединенных к питающим трубопроводам спринклерной установки, следует принимать равной времени работы спринклерной установки. Продолжительность работы пожарных кранов с пенными пожарными стволами, питаемых от самостоятельных вводов, следует принимать равной 1 ч.

Методика расчета параметров установок пожаротушения

высокократной пеной

1. Определяется расчетный объем V (м 3) защищаемого помещения или объем локального пожаротушения. Расчетный объем помещения определяется произведением площади пола на высоту заполнения помещения пеной, за исключением величины объема сплошных (непроницаемых) строительных несгораемых элементов (колонны, балки, фундаменты и т. д.).

2. Выбирается тип и марка генератора высокократной пены и устанавливается его производительность по раствору пенообразователя q (дм 3 мин -1).

3. Определяется расчетное количество генераторов высокократной пены

где a - коэффициент разрушения пены;  - максимальное время заполнения пеной объема защищаемого помещения, мин; K - кратность пены.

Значение коэффициента а рассчитывается по формуле:

а = К 1 К 2 К 3 (2),

где К 1 - коэффициент учитывающий усадку пены, принимается равным 1,2 при высоте помещения до 4 м и 1,5 - при высоте помещения до 10 м. При высоте помещения свыше 10 м определяется экспериментально.

К 2 - учитывает утечки пены; при отсутствии открытых проемов принимается равным 1,2. При наличии открытых проемов определяется экспериментально.

К 3 - учитывает влияние дымовых газов на разрушение пены. Для учета влияния продуктов сгорания углеводородных жидкостей значение коэффициента принимается равным -1,5. Для других видов пожарной нагрузки определяется экспериментально.

Максимальное время заполнения пеной объема защищаемого помещения принимается не более 10 мин.

4. Определяется производительность системы по раствору пенообразователя, м 3 с -1:

5. По технической документации устанавливается объемная концентрация пенообразователя в растворе c, (%).

6. Определяется расчетное количество пенообразователя, м 3:

. (4)

ПРИЛОЖЕНИЕ 3 (Измененная редакция, Изм. № 1)

ПРИЛОЖЕНИЕ 4 (Исключено, Изм. № 1)

ПРИЛОЖЕНИЕ 5

Обязательное

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА МАССЫ ГАЗОВЫХ ОГНЕТУШАЩИХ ВЕЩЕСТВ

Нормативная объемная огнетушащая концентрация газообразного азота (№ 2).

Плотность газа при Р = 101,3 кПа и Т = 20 С составляет 1,17 кг  м -3 .

Таблица 1

ГОСТ, ТУ, ОСТ

ГОСТ 25823-83

Бензин А-76

Масло машинное

Нормативная объемная огнетушащая концентрация газообразного аргона (Ar).

Плотность газа при Р = 101,3 кПа и Т = 20 С составляет 1,66 кг  м -3 .

Таблица 2

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

Бензин А-76

Масло машинное

Нормативная объемная огнетушащая концентрация двуокиси углерода (СО 2).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 1,88 кг  м -3 .

Таблица 3

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823- 83

Спирт этиловый

ГОСТ 18300-87

Ацетон технический

ГОСТ 2768-84

ГОСТ 5789-78

Спирт изобутиловый

ГОСТ 6016-77

Керосин осветительный КО-25

ТУ 38401-58-10-90

Растворитель 646

ГОСТ 18188-72

Нормативная объемная огнетушащая концентрация шестифтористой серы (SF 6).

Плотность паров при P = 101,3 кПа и Т = 20 С составляет 6,474 кг  м -3 .

Таблица 4

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

ГОСТ 18300-72

Трансформаторное масло

Нормативная объемная огнетушащая концентрация хладона 23 (CF 3 H).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 2,93 кг  м -3 .

Таблица 5

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

Нормативная объемная огнетушащая концентрация хладона 125 (C 2 F 5 H).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 5,208 кг  м -3 .

Таблица 6

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

ГОСТ 18300-72

Вакуумное масло

Нормативная объемная огнетушащая концентрация хладона 218 (C 3 F 8) .

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 7,85 кг  м -3 .

Таблица 7

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

Бензин А-76

Растворитель 647

Нормативная объемная огнетушащая концентрация хладона 227еа (C 3 F 7 H).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 7,28 кг  м -3 .

Таблица 8

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

Бензин А-76

Растворитель 647

Нормативная объемная огнетушащая концентрация хладона 318 Ц (C 4 F 8ц).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 8,438 кг  м -3 .

Таблица 9

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

ГОСТ 18300-72

Нормативная объемная огнетушащая концентрация газового состава "Инерген" (азот (№ 2) – 52 % (об.); аргон (Ar) – 40 % (об.); двуокись углерода (СО 2) – 8 % (об.)).

Плотность паров при Р = 101,3 кПа и Т = 20 С составляет 1,42 кг  м -3 .

Таблица 10

Наименование горючего материала

ГОСТ, ТУ, ОСТ

Нормативная объемная огнетушащая концентрация, % (об.)

ГОСТ 25823-83

36,5Документ

От 4 июня 2001 г. N 31 НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ УСТАНОВКИ ПОЖАРОТУШЕНИЯ И СИГНАЛИЗАЦИИ . НОРМЫ И ПРАВИЛА ПРОЕКТИРОВАНИЯ FIRE -EXTINGUISHING AND ALARM SYSTEMS . DESINGING AND REGULATIONS NORMS НПБ 88-2001 (в ред...

  • Государственная противопожарная служба нормы пожарной безопасности установки пожаротушения и сигнализации нормы и правила проектирования нпб 88-2001

    Документ

    ГОСУДАРСТВЕННАЯ ПРОТИВОПОЖАРНАЯ СЛУЖБА НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ УСТАНОВКИ ПОЖАРОТУШЕНИЯ И СИГНАЛИЗАЦИИ . НОРМЫ И ПРАВИЛА ПРОЕКТИРОВАНИЯ НПБ 88-2001 Fire -extinguishing and alarm systems . desinging and regulations norms Взамен СНиП...

  • Нормы пожарной безопасности нпб 88-2001 " установки пожаротушения и сигнализации нормы и правила проектирования" (с изменениями от 31 декабря 2002 г) (согласованы с госстроем рф письмом от 23 04 2001 г n 9-18/238) fire-extinguishing

    Документ

    Предыдущей редакции Нормы пожарной безопасности НПБ 88-2001 "Установки пожаротушения и сигнализации . Нормы и правила проектирования" (утв. ... г. N 9-18/238) Fire -extinguishing and alarm systems . Desinging and regulations norms Дата введения 01.01.2002 ...

  • № 31 ГОСУДАРСТВЕННАЯ ПРОТИВОПОЖАРНАЯ СЛУЖБА НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ УСТАНОВКИ ПОЖАРОТУШЕНИЯ И СИГНАЛИЗАЦИИ

    Документ

    ФЕДЕРАЦИИ ГОСУДАРСТВЕННАЯ ПРОТИВОПОЖАРНАЯ СЛУЖБА НОРМЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ УСТАНОВКИ ПОЖАРОТУШЕНИЯ И СИГНАЛИЗАЦИИ . НОРМЫ и правила ПРОЕКТИРОВАНИЯ Fire -extinguishing and alarm systems . desinging and regulations norms НПБ 88-2001 Издание...

  • Определить расчетные расходы пенообразователя и воды, тип и количест­во пеногенераторов при тушении пожара пеной средней кратности в резервуаре в зависимости от их конструкции, а также пеной низкой кратности, подаваемой в слой нефтепродукта .

    Исходные данные:

    Резервуар вместимостью 10000 м 3 со стационарной крышей (СК) или ре­зервуар с понтоном (СП), или резервуар с плавающей крышей (ПК);

    Хранимый нефтепродукт - нефть с температурой вспышки менее 28 °С;

    Жесткость воды для приготовления раствора пенообразователя до 10 мг·экв/л;

    Марка пенообразователя для тушения пеной средней кратности - ПО-1Д, для тушения пеной низкой кратности подаваемой в слой продукта - ФОРЕТОЛ.

    Пена средней кратности

    По табл. 4.1., в зависимости от марки пенообразователя (ПО - 1Д), опреде­ляем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2). В зависимо­сти от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пе­нообразователя в растворе - 6%.

    Для наземных резервуаров СК и СП по табл. 4.2. определяем:

    Тип пеногенераторов - ГПСС - 2000;

    Для наземного резервуара с ПК по табл. 4.3. определяем:

    Расчетный расход раствора пенообразователя - 24 л/с;

    Тип пеногенераторов - ГПС - 600;

    Количество пеногенераторов - 4 шт.

    Пена низкой кратности

    По таблице 4.4. определяем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2).

    В зависимости от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пенообразователя в растворе - 5%.

    Для наземных резервуаров по таблице 17. определяем:

    Расчетный расход раствора пенообразователя - 60 л/с;

    Тип пеногенераторов - ВПГ - 20;

    Количество пеногенераторов - 3 шт.

    Таблица 4.1

    Определение рабочей концентрации пенообразователя в растворе

    Вид нефтежидкости Нормативная интенсивность подачи раствора в зависимости от вида ПО,л/c·м 2 Рабочая концентрация ПО в зависимости от вида воды
    ПО общего назначения ПО специального назначения
    ПО-1 ПО-6 ПО-1Д ПО -ЗАИ ТАЭС САМПО Фторсинтетические ПО: форетол универсальный подслойный
    при подаче на пов-ть неф-та при подаче в слой неф-та
    Жесткость воды, (мг·экв)/л
    до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30
    Пена средней кратности Пена низ-й кр-ти
    Нефть и др. неф-ты с температурой вс­пышки менее 28°С 0,08 0,08 0,08 0,065 0,04 0,08
    - - -
    Бензины 0,08 0,06 0,06 0,06 0,04 0„08
    - - -
    Нефть и др. неф-ты с температурой вспышки более 28°С 0,05 0,05 0,05 0,04 - 0,06
    - - - - -
    Нефть в смеси с газовым конденса­том до 5 0,12 0,12 0,12 0,09 0,04 0,1
    - - -

    Таблица 4.2

    Определение расчетного расхода раствора пенообразователя и количества ГПС (ГПСС) для тушения резервуаров

    Защищаемая площадь, м 2 Номинальный объем наземного резервуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м 2). Количество ГПС (ГПСС), шт.
    Интенсивность подачи раствора ПО, л/(с·м 2).
    0,04 0,05 0,06 0,065 0,08 0,09 0,1 0,12
    До 50 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
    50 – 100 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
    100 – 150 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) ---
    150 – 200 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2)
    200 – 250 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2)
    250 – 300 12 (2) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2)
    300 – 350 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3)
    350 – 400 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3)
    400 – 450 18 (3) --- 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3) 48 (8) 60 (3) 54 (9) 60 (3)
    450 – 500 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3)
    500 – 600 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3) --- 80 (4)
    600 – 700 30 (5) 40 (2) 36 (6) 40 (2) 48 (8) 60 (3) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5)
    700 – 1000 42 (7) 40 (2) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 100 (5) --- 120 (6)
    1000 – 1300 54 (9) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 120 (6) --- 140 (7) --- 160 (8)
    1300 – 1600 --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 160 (8) --- 200(10)
    1600 – 2000 --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12)
    2000 – 2500 --- 100 (5) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 260(13) --- 300(15)
    2500 – 3000 --- 120 (6) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 280(14) --- 300(15) --- 360(18)

    Примечания: 1. В скобках приводятся расчетные данные по количеству ГПС для тушения резервуаров.

    2. В числителе дроби приводятся данные для ГПС - 600, в знаменателе для ГПС - 2000

    Таблица 4.3

    Определение расчетного расхода раствора пенообразователя и количества ГПС для тушения резервуаров с плавающей крышей

    Номинальный объем резервуара ПК,м 3 Периметр ре­зервуара ПК,м 3 Расчетный расход раствора ПО, л/с Количество ГПС, шт
    2 (4)
    2 (12)
    2 (4)
    2 (12)
    3 (6)
    3 (18)
    3 (6)
    3 (18)
    4 (8)
    4 (24)
    -
    5 (30)
    -
    6 (36)
    -
    8 (48)
    -
    8 (48)
    -
    11 (66)

    Примечания:

    1. В скобках приводятся расчетные данные по расходу раствора понеообразователя для тушения резервуаров с плавающей крышей.

    2. В числителе дроби приводятся данные для ГПС - 200, в знаменателе для ГПС -600.

    3. Количество ГПС, приведенных в таблице, является минимальным" не зависимо от площади тушения пожара.

    Таблица 4.4

    Определение расчетного расхода фторсинтетического пенообразователя и ко­личества пеногенераторов типа ВПГ при подаче низкократной пены в слой

    нефтепродукта

    Защищаемая площадь ре­зервуара, м 2 Номинальный объем резер­вуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м) Количество ВПГ, шт
    Интенсивность подачи раствора, л/(с·м)
    0,06 0,08 0,1
    До 50 20 (2) --- 20 (2) --- 20 (2) ---
    50 – 100 20 (2) --- 20 (2) --- 20 (2) ---
    20 (2) --- 20 (2) --- 20 (2) ---
    20 (2) --- 30 (3) 40 (2) 30 (3) 40 (2)
    30 (3) 40 (2) 30 (3) 40 (2) 40 (4) 40 (2)
    41 (4) 40 (2) 60 (6) 60 (3) 70 (7) 80 (4)
    80 (8) 80 (4) 110 (11) 120 (6) 130 (13) 140 (7)
    100 (10) 100 (5) 140 (14) 140 (7) 170 (17) 180 (9)
    160 (16) 160 (8) 210 (21) 220 (11) 260 (26) 260 (13)
    180 (18) 180 (9) 240 (24) 240 (12) 290 (29) 300 (15)

    Примечание:

    1 .В скобках приводятся расчетные данные по количеству ВПГ для тушения резервуа­ров.

    2.В числителе и знаменателе дроби приводятся данные соответственно для ВПГ - 10 и ВПГ - 20.

    Расчеты сил и средств выполняют в следующих случаях:

    • при определении требуемого количества сил и средств на тушение пожара;
    • при оперативно-тактическом изучении объекта;
    • при разработке планов тушения пожаров;
    • при подготовке пожарно-тактических учений и занятий;
    • при проведении экспериментальных работ по определению эффектив­ности средств тушения;
    • в процессе исследования пожара для оценки действий РТП и подразделений.

    Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)

      • характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
      • время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
      • линейная скорость распространения пожара V л ;
      • силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
      • интенсивность подачи огнетушащих средств I тр .

    1) Определение времени развития пожара на различные моменты времени.

    Выделяются следующие стадии развития пожара:

    • 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
    • 3 стадия характеризуется началом введения первых стволов на туше­ние пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локали­зации), ее значение принимается равным 0,5 V л . В момент выполнения условий локализации V л = 0 .
    • 4 стадия – ликвидация пожара.

    t св = t обн + t сооб + t сб + t сл + t бр (мин.), где

    • t св – время свободного развития пожара на момент прибытия подразделения;
    • t обн время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
    • t сооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
    • t сб = 1 мин. – время сбора личного состава по тревоге;
    • t сл – время следования пожарного подразделения (2 мин. на 1 км пути );
    • t бр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).

    2) Определение расстояния R , пройденного фронтом горения, за время t .

    при t св ≤ 10 мин.: R = 0,5 ·V л · t св (м);

    при t вв > 10 мин.: R = 0,5 ·V л · 10 + V л · (t вв – 10)= 5 ·V л + V л · (t вв – 10) (м);

    при t вв < t * ≤ t лок : R = 5 ·V л + V л · (t вв – 10) + 0,5 ·V л · (t * – t вв ) (м).

    • где t св – время свободного развития,
    • t вв – время на момент введения первых стволов на тушение,
    • t лок – время на момент локализации пожара,
    • t * – время между моментами локализации пожара и введения первых стволов на тушение.

    3) Определение площади пожара.

    Площадь пожара S п – это площадь проекции зоны горения на горизонтальную или (реже) на вертикальную плоскость. При горении на нескольких этажах за площадь пожара принимают суммарную площадь пожара на каждом этаже.

    Периметр пожара Р п – это периметр площади пожара.

    Фронт пожара Ф п – это часть периметра пожара в направлении (направлениях) распространения горения.

    Для определения формы площади пожара следует вычертить схему объекта в масштабе и от места возникновения пожара отложить в масштабе величину пути R , пройденного огнем во все возможные стороны.

    При этом принято выделять три варианта формы площади пожара:

    • круговую (Рис.2);
    • угловую (Рис. 3, 4);
    • прямоугольную (Рис. 5).

    При прогнозировании развития пожара следует учитывать, что форма площади пожара может меняться. Так, при достижении фронтом пламени ограждающей конструкции или края площадки, принято считать, что фронт пожара спрямляется и форма площади пожара изменяется (Рис. 6).

    а) Площадь пожара при круговой форме развития пожара.

    S п = k · p · R 2 (м 2) ,

    • где k = 1 – при круговой форме развития пожара (рис. 2),
    • k = 0,5 – при полукруговой форме развития пожара (рис. 4),
    • k = 0,25 – при угловой форме развития пожара (рис. 3).

    б) Площадь пожара при прямоугольной форме развития пожара.

    S п = n ·b · R (м 2) ,

    • где n – количество направлений развития пожара,
    • b – ширина помещения.

    в) Площадь пожара при комбинированной форме развития пожара (рис 7)

    S п = S 1 + S 2 (м 2)

    а) Площадь тушения пожара по периметру при круговой форме развития пожара.

    S т = k · p · (R 2 – r 2) = k · p ··h т · (2·R – h т) (м 2),

    • где r = R h т ,
    • h т – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).

    б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.

    S т = 2 ·h т · (a + b – 2 ·h т ) (м 2)– по всему периметру пожара ,

    где а и b – соответственно длина и ширина фронта пожара.

    S т = n·b·h т (м 2 ) – по фронту распространяющегося пожара ,

    где b и n – соответственно ширина помещения и количество направлений подачи стволов.

    5) Определение требуемого расхода воды на тушение пожара.

    Q т тр = S п · I тр при S п ≤ S т (л/с) или Q т тр = S т · I тр при S п > S т (л/с)

    Интенсивность подачи огнетушащих веществ I тр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.

    Различают следующие виды интенсивности:

    Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.

    Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м 2 . Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.

    Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м 3 . Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.

    Требуемая I тр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.

    Фактическая I ф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.

    6) Определение требуемого количества стволов на тушение.

    а) N т ст = Q т тр / q т ст – по требуемому расходу воды,

    б) N т ст = Р п / Р ст – по периметру пожара,

    Р п – часть периметра, на тушение которого вводятся стволы

    Р ст = q ст / I тр h т – часть периметра пожара, которая тушится одним стволом. Р = 2 · p ·L (длина окружности), Р = 2 · а + 2 ·b (прямоугольник)

    в) N т ст = (m + A ) – в складах со стеллажным хранением (рис. 11) ,

    • где n – количество направлений развития пожара (ввода стволов),
    • m – количество проходов между горящими стеллажами,
    • A – количество проходов между горящим и соседним негорящим стеллажами.

    7) Определение требуемого количества отделений для подачи стволов на тушение.

    N т отд = N т ст / n ст отд ,

    где n ст отд – количество стволов, которое может подать одно отделение.

    8) Определение требуемого расхода воды на защиту конструкций.

    Q з тр = S з · I з тр (л/с) ,

    • где S з – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
    • I з тр = (0,3-0,5) ·I тр – интенсивность подачи воды на защиту.

    9) Определение требуемого количества стволов на защиту конструкций.

    N з ст = Q з тр / q з ст ,

    Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.

    10) Определение требуемого количества отделений для подачи стволов на защиту конструкций.

    N з отд = N з ст / n ст отд

    11) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).

    N л отд = N л / n л отд , N мц отд = N мц / n мц отд , N вск отд = S вск / S вск отд

    12) Определение общего требуемого количества отделений.

    N общ отд = N т ст + N з ст + N л отд + N мц отд + N вск отд

    На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.

    13) Сравнение фактического расхода воды Q ф на тушение, защиту и водоотдачи сети Q вод противопожарного водоснабжения

    Q ф = N т ст · q т ст + N з ст · q з ст Q вод

    14) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.

    На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.

    N АЦ = Q тр / 0,8 Q н ,

    где Q н – подача насоса, л/с

    Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.

    Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.

    В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.

    Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади

    (не распространяющиеся пожары или условно приводящиеся к ним)

    Исходные данные для расчета сил и средств:

    • площадь пожара;
    • интенсивность подачи раствора пенообразователя;
    • интенсивность подачи воды на охлаждение;
    • расчетное время тушения.

    При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.

    На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.

    1) Требуемое количество стволов на охлаждение горящего резервуара.

    N зг ств = Q зг тр / q ств = n π D гор I зг тр / q ств , но не менее 3 х стволов,

    I зг тр = 0,8 л/см – требуемая интенсивность для охлаждения горящего резервуара,

    I зг тр = 1,2 л/см – требуемая интенсивность для охлаждения горящего резервуара при пожаре в ,

    Охлаждение резервуаров W рез ≥ 5000 м 3 и более целесообразно осуществлять лафетными стволами.

    2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.

    N зс ств = Q зс тр / q ств = n 0,5 π D сос I зс тр / q ств , но не менее 2 х стволов,

    I зс тр = 0,3 л/см – требуемая интенсивность для охлаждения соседнего не горящего резервуара,

    n – количество горящих или соседних резервуаров соответственно,

    D гор , D сос – диаметр горящего или соседнего резервуара соответственно (м),

    q ств – производительность одного (л/с),

    Q зг тр , Q зс тр – требуемый расход воды на охлаждение (л/с).

    3) Требуемое количество ГПС N гпс на тушение горящего резервуара.

    N гпс = S п I р-ор тр / q р-ор гпс (шт.),

    S п – площадь пожара (м 2),

    I р-ор тр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м 2). При t всп ≤ 28 о C I р-ор тр = 0,08 л/с∙м 2 , при t всп > 28 о C I р-ор тр = 0,05 л/с∙м 2 (см. приложение № 9)

    q р-ор гпс производительность ГПС по раствору пенообразователя (л/с).

    4) Требуемое количество пенообразователя W по на тушение резервуара.

    W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

    τ р = 15 минут – расчетное время тушения при подаче ВМП сверху,

    τ р = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,

    К з = 3 – коэффициент запаса (на три пенные атаки),

    q по гпс – производительность ГПС по пенообразователю (л/с).

    5) Требуемое количество воды W в т на тушение резервуара.

    W в т = N гпс q в гпс ∙ 60 ∙ τ р ∙ К з (л),

    q в гпс – производительность ГПС по воде (л/с).

    6) Требуемое количество воды W в з на охлаждение резервуаров.

    W в з = N з ств q ств τ р ∙ 3600 (л),

    N з ств – общее количество стволов на охлаждение резервуаров,

    q ств – производительность одного пожарного ствола (л/с),

    τ р = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),

    τ р = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).

    7) Общее требуемое количество воды на охлаждение и тушение резервуаров.

    W в общ = W в т + W в з (л)

    8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.

    T = ( H h ) / ( W + u + V ) (ч), где

    H – начальная высота слоя горючей жидкости в резервуаре, м;

    h – высота слоя донной (подтоварной) воды, м;

    W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);

    u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);

    V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V = 0 ).

    Тушение пожаров в помещениях воздушно-механической пеной по объему

    При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).

    При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.

    1) Определение требуемого количества ГПС для объемного тушения.

    N гпс = W пом ·К р / q гпс t н , где

    W пом – объем помещения (м 3);

    К р = 3 – коэффициент, учитывающий разрушение и потерю пены;

    q гпс – расход пены из ГПС (м 3 /мин.);

    t н = 10 мин – нормативное время тушения пожара.

    2) Определение требуемого количества пенообразователя W по для объемного тушения.

    W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

    Пропускная способность рукавов

    Приложение № 1

    Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра

    Пропускная способность, л/с

    Диаметр рукавов, мм

    51 66 77 89 110 150
    10,2 17,1 23,3 40,0

    Приложение 2

    Величины сопротивления одного напорного рукава длиной 20 м

    Тип рукавов Диаметр рукавов, мм
    51 66 77 89 110 150
    Прорезиненные 0,15 0,035 0,015 0,004 0,002 0,00046
    Непрорезиненные 0,3 0,077 0,03

    Приложение 3

    Объем одного рукава длиной 20 м

    Приложение № 4

    Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).

    № п/п Тип резервуара Высота резервуара, м Диаметр резервуара, м Площадь зеркала горючего, м 2 Периметр резервуара, м
    1 РВС-1000 9 12 120 39
    2 РВС-2000 12 15 181 48
    3 РВС-3000 12 19 283 60
    4 РВС-5000 12 23 408 72
    5 РВС-5000 15 21 344 65
    6 РВС-10000 12 34 918 107
    7 РВС-10000 18 29 637 89
    8 РВС-15000 12 40 1250 126
    9 РВС-15000 18 34 918 107
    10 РВС-20000 12 46 1632 143
    11 РВС-20000 18 40 1250 125
    12 РВС-30000 18 46 1632 143
    13 РВС-50000 18 61 2892 190
    14 РВС-100000 18 85,3 5715 268
    15 РВС-120000 18 92,3 6691 290

    Приложение № 5

    Линейные скорости распространения горения при пожарах на объектах.

    Наименование объекта Линейная скорость распространения горения, м/мин
    Административные здания 1,0…1,5
    Библиотеки, архивы, книгохранилища 0,5…1,0
    Жилые дома 0,5…0,8
    Коридоры и галереи 4,0…5,0
    Кабельные сооружения (горение кабелей) 0,8…1,1
    Музеи и выставки 1,0…1,5
    Типографии 0,5…0,8
    Театры и Дворцы культуры (сцены) 1,0…3,0
    Сгораемые покрытия цехов большой площади 1,7…3,2
    Сгораемые конструкции крыш и чердаков 1,5…2,0
    Холодильники 0,5…0,7
    Деревообрабатывающие предприятия:
    Лесопильные цехи (здания I, II, III СО) 1,0…3,0
    То же, здания IV и V степеней огнестойкости 2,0…5,0
    Сушилки 2,0…2,5
    Заготовительные цеха 1,0…1,5
    Производства фанеры 0,8…1,5
    Помещения других цехов 0,8…1,0
    Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %)
    Сосняк до 1,4
    Ельник до 4,2
    Школы, лечебные учреждения:
    Здания I и II степеней огнестойкости 0,6…1,0
    Здания III и IV степеней огнестойкости 2,0…3,0
    Объекты транспорта:
    Гаражи, трамвайные и троллейбусные депо 0,5…1,0
    Ремонтные залы ангаров 1,0…1,5
    Склады:
    Текстильных изделий 0,3…0,4
    Бумаги в рулонах 0,2…0,3
    Резинотехнических изделий в зданиях 0,4…1,0
    То же в штабелях на открытой площадке 1,0…1,2
    Каучука 0,6…1,0
    Товарно-материальных ценностей 0,5…1,2
    Круглого леса в штабелях 0,4…1,0
    Пиломатериалов (досок) в штабеля при влажности 16…18 % 2,3
    Торфа в штабелях 0,8…1,0
    Льноволокна 3,0…5,6
    Сельские населенные пункты:
    Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде 2,0…2,5
    Соломенные крыши зданий 2,0…4,0
    Подстилка в животноводческих помещениях 1,5…4,0

    Приложение № 6

    Интенсивность подачи воды при тушении пожаров, л/(м 2 .с)

    1. Здания и сооружения
    Административные здания:
    I-III степени огнестойкости 0.06
    IV степени огнестойкости 0.10
    V степени огнестойкости 0.15
    подвальные помещения 0.10
    чердачные помещения 0.10
    Больницы 0.10
    2. Жилые дома и подсобные постройки:
    I-III степени огнестойкости 0.06
    IV степени огнестойкости 0.10
    V степени огнестойкости 0.15
    подвальные помещения 0.15
    чердачные помещения 0.15
    3.Животноводческие здания:
    I-III степени огнестойкости 0.15
    IV степени огнестойкости 0.15
    V степени огнестойкости 0.20
    4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):
    сцена 0.20
    зрительный зал 0.15
    подсобные помещения 0.15
    Мельницы и элеваторы 0.14
    Ангары, гаражи, мастерские 0.20
    локомотивные, вагонные, трамвайные и троллейбусные депо 0.20
    5.Производственные здания участки и цехи:
    I-II степени огнестойкости 0.15
    III-IV степени огнестойкости 0.20
    V степени огнестойкости 0.25
    окрасочные цехи 0.20
    подвальные помещения 0.30
    чердачные помещения 0.15
    6. Сгораемые покрытия больших площадей
    при тушении снизу внутри здания 0.15
    при тушении снаружи со стороны покрытия 0.08
    при тушении снаружи при развившемся пожаре 0.15
    Строящиеся здания 0.10
    Торговые предприятия и склады 0.20
    Холодильники 0.10
    7. Электростанции и подстанции:
    кабельные тоннели и полуэтажи 0.20
    машинные залы и котельные помещения 0.20
    галереи топливоподачи 0.10
    трансформаторы, реакторы, масляные выключатели* 0.10
    8. Твердые материалы
    Бумага разрыхленная 0.30
    Древесина:
    балансовая при влажности, %:
    40-50 0.20
    менее 40 0.50
    пиломатериалы в штабелях в пределах одной группы при влажности, %:
    8-14 0.45
    20-30 0.30
    свыше 30 0.20
    круглый лес в штабелях в пределах одной группы 0.35
    щепа в кучах с влажностью 30-50 % 0.10
    Каучук, резина и резинотехнические изделия 0.30
    Пластмассы:
    термопласты 0.14
    реактопласты 0.10
    полимерные материалы 0.20
    текстолит, карболит, отходы пластмасс, триацетатная пленка 0.30
    Хлопок и другие волокнистые материалы:
    открытые склады 0.20
    закрытые склады 0.30
    Целлулоид и изделия из него 0.40
    Ядохимикаты и удобрения 0.20

    * Подача тонкораспыленной воды.

    Тактико-технические показатели приборов подачи пены

    Прибор подачи пены Напор у прибора, м Концция р-ра, % Расход, л/с Кратность пены Производ-сть по пене, м куб./мин(л/с) Дальность подачи пены, м
    воды ПО р-ра ПО
    ПЛСК-20 П 40-60 6 18,8 1,2 20 10 12 50
    ПЛСК-20 С 40-60 6 21,62 1,38 23 10 14 50
    ПЛСК-60 С 40-60 6 47,0 3,0 50 10 30 50
    СВП 40-60 6 5,64 0,36 6 8 3 28
    СВП(Э)-2 40-60 6 3,76 0,24 4 8 2 15
    СВП(Э)-4 40-60 6 7,52 0,48 8 8 4 18
    СВП-8(Э) 40-60 6 15,04 0,96 16 8 8 20
    ГПС-200 40-60 6 1,88 0,12 2 80-100 12 (200) 6-8
    ГПС-600 40-60 6 5,64 0,36 6 80-100 36 (600) 10
    ГПС-2000 40-60 6 18,8 1,2 20 80-100 120 (2000) 12

    Линейная скорость выгорания и прогрева углеводородных жидкостей

    Наименование горючей жидкости Линейная скорость выгорания, м/ч Линейная скорость прогрева горючего, м/ч
    Бензин До 0,30 До 0,10
    Керосин До 0,25 До 0,10
    Газовый конденсат До 0,30 До 0,30
    Дизельное топливо из газового конденсата До 0,25 До 0,15
    Смесь нефти и газового конденсата До 0,20 До 0,40
    Дизельное топливо До 0,20 До 0,08
    Нефть До 0,15 До 0,40
    Мазут До 0,10 До 0,30

    Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.

    Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках

    (информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)

    Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах

    Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.

    Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*

    № п/п Вид нефтепродукта Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’
    Фторсодержащие пенообразователи “не пленкообразующие” Фторсинтетические “пленкообразующие” пенообразователи Фторпротеиновые “пленкообразующие” пенообразователи
    на поверхность в слой на поверхность в слой на поверхность в слой
    1 Нефть и нефтепродукты с Т всп 28° С и ниже 0,08 0,07 0,10 0,07 0,10
    2 Нефть и нефтепродукты с Т всп более 28 °С 0,06 0,05 0,08 0,05 0,08
    3 Стабильный газовый конденсат 0,12 0,10 0,14 0,10 0,14

    Основные показатели, характеризующих тактические возможности пожарных подразделений

    Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

      ;
    • возможную площадь тушения воздушно-механической пеной;
    • возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
    • предельное расстояние по подаче огнетушащих средств.

    Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987

    Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник

    1) Определение формула времени работы водяных стволов от автоцистерны:

    t раб = (V ц – N p ·V p) / N ст ·Q ст ·60 (мин.) ,

    N р = k · L / 20 = 1,2· L / 20 (шт.) ,

    • где: t раб – время работы стволов, мин.;
    • V ц – объем воды в цистерне , л;
    • N р – число рукавов в магистральной и рабочих линиях, шт.;
    • V р – объем воды в одном рукаве, л (см. прилож.);
    • N ст – число водяных стволов, шт.;
    • Q ст – расход воды из стволов, л/с (см. прилож.);
    • k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
    • L – расстояние от места пожара до пожарного автомобиля (м).

    Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = (0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)

    2) Определение формула возможной площади тушения водой S Т от автоцистерны:

    S Т = (V ц – N p ·V p) / J тр · t расч · 60 (м 2) ,

    • где: J тр – требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);
    • t расч = 10 мин. – расчетное время тушения.

    3) Определение формула времени работы приборов подачи пены от автоцистерны:

    t раб = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 (мин.) ,

    • где: V р-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
    • N гпс – число ГПС (СВП), шт;
    • Q гпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).

    Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.

    К В = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).

    Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:

    К ф = V ц / V по ,

    • где V ц – объем воды в цистерне пожарной машины, л;
    • V по – объем пенообразоователя в баке, л.

    если К ф < К в, то V р-ра = V ц / К в + V ц (л) – вода расходуется полностью, а часть пенообразователя остается.

    если К ф > К в, то V р-ра = V по ·К в + V по (л) – пенообразователь расходуется полностью, а часть воды остается.

    4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:

    S т = (V р-ра – N p ·V p) / J тр · t расч · 60 (м 2),

    • где: S т – площадь тушения, м 2 ;
    • J тр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;

    При t всп ≤ 28 о C J тр = 0,08 л/с∙м 2 , при t всп > 28 о C J тр = 0,05 л/с∙м 2 .

    t расч = 10 мин. – расчетное время тушения.

    5) Определение формула объема воздушно-механической пены , получаемого от АЦ:

    V п = V р-ра ·К (л),

    • где: V п – объем пены, л;
    • К – кратность пены;

    6) Определение возможного объема тушения воздушно-механической пеной:

    V т = V п / К з (л, м 3),

    • где: V т – объем тушения пожара;
    • К з = 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.

    Примеры решения задач

    Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.

    Решение:

    t = (V ц – N р V р) / N ст ·Q ст · 60 =2400 – (1· 90 + 4 · 40) / 2 · 3,5 · 60 = 4,8 мин .

    Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.

    Решение:

    К ф = V ц / V по = 2350/170 = 13,8.

    К ф = 13,8 < К в = 15,7 для 6-ти % раствора

    V р-ра = V ц / К в + V ц = 2350/15,7 + 2350 » 2500 л.

    t = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 = (2500 – 2 · 90)/1 · 6 · 60 = 6,4 мин .

    Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).

    Решение:

    1) Определяем объем водного раствора пенообразователя:

    К ф = V ц / V по = 4000/200 = 20.

    К ф = 20 > К в = 15,7 для 6-ти % раствора,

    V р-ра = V по ·К в + V по = 200·15,7 + 200 = 3140 + 200 = 3340 л.

    2) Определяем возможную площадь тушения:

    S т = V р-ра / J тр · t расч ·60 = 3340/0,08 ·10 · 60 = 69,6 м 2 .

    Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).

    Решение:

    V п = V р-ра · К = 2500 · 100 = 250000 л = 250 м 3 .

    Тогда объем тушения (локализации):

    V т = V п /К з = 250/3 = 83 м 3 .

    Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник

    Рис. 1. Схема подачи воды в перекачку

    Расстояние в рукавах (штуках) Расстояние в метрах
    1) Определение предельного расстояния от места пожара до головного пожарного автомобиля N гол ( L гол ).
    N мм ( L мм ), работающими в перекачку (длины ступени перекачки).
    N ст
    4) Определение общего количества пожарных машин для перекачки N авт
    5) Определение фактического расстояния от места пожара до головного пожарного автомобиля N ф гол ( L ф гол ).
    • H н = 90÷100 м – напор на насосе АЦ,
    • H разв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,
    • H ст = 35÷40 м – напор перед стволом,
    • H вх ≥ 10 м – напор на входе в насос следующей ступени перекачки,
    • Z м – наибольшая высота подъема (+) или спуска (–) местности (м),
    • Z ст – наибольшая высота подъема (+) или спуска (–) стволов (м),
    • S – сопротивление одного пожарного рукава,
    • Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
    • L – расстояние от водоисточника до места пожара (м),
    • N рук – расстояние от водоисточника до места пожара в рукавах (шт.).

    Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.

    Решение:

    1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.

    2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.

    N ГОЛ = / SQ 2 = / 0,015 · 10,5 2 = 21,1 = 21.

    3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.

    N МР = / SQ 2 = / 0,015 · 10,5 2 = 41,1 = 41.

    4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.

    N Р = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.

    5) Определяем число ступеней перекачки

    N СТУП = (N Р − N ГОЛ) / N МР = (90 − 21) / 41 = 2 ступени

    6) Определяем количество пожарных автомобилей для перекачки.

    N АЦ = N СТУП + 1 = 2 + 1 = 3 автоцистерны

    7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.

    N ГОЛ ф = N Р − N СТУП · N МР = 90 − 2 · 41 = 8 рукавов.

    Следовательно, головной автомобиль можно приблизить к месту пожара.

    Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара

    Если застройка сгораемая, а водоисточники находятся на очень боль­шом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, при­нимая во внимание возможные масштабы и длительность пожара, рас­стояние до водоисточников, скорость сосредоточения пожарных автомо­билей, рукавных автомобилей и другие особенности гарнизона.

    Формула расхода воды АЦ

    (мин.) – время расхода воды АЦ на месте тушения пожара;

    • L – расстояние от места пожара до водоисточника (км);
    • 1 – минимальное количество АЦ в резерве (может быть увеличено);
    • V движ – средняя скорость движения АЦ (км/ч);
    • W цис – объем воды в АЦ (л);
    • Q п – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
    • N пр – число приборов подачи воды к месту тушения пожара (шт.);
    • Q пр – общий расход воды из приборов подачи воды от АЦ (л/с).

    Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.

    Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.

    Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.

    Решение:

    1) Определяем время следования АЦ к месту пожара или обратно.

    t СЛ = L · 60 / V ДВИЖ = 2 · 60 / 30 = 4 мин.

    2) Определяем время заправки автоцистерн.

    t ЗАП = V Ц /Q Н · 60 = 2350 / 40 · 60 = 1 мин.

    3)Определяем время расхода воды на месте пожара.

    t РАСХ = V Ц / N СТ · Q СТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.

    4) Определяем количество автоцистерн для подвоза воды к месту пожара.

    N АЦ = [(2t СЛ + t ЗАП) / t РАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.

    Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем

    При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.

    1) Определим требуемое количество воды V СИСТ , необходимое для запуска гидроэлеваторной системы:

    V СИСТ = N Р ·V Р ·K ,

    N Р = 1,2·(L + Z Ф ) / 20 ,

    • гдеN Р − число рукавов в гидроэлеваторной системе (шт.);
    • V Р − объем одного рукава длиной 20 м (л);
    • K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K =1,5 – 2 Г-600);
    • L – расстояние от АЦ до водоисточника (м);
    • Z Ф – фактическая высота подъема воды (м).

    Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.

    2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.

    И = Q СИСТ / Q Н ,

    Q СИСТ = N Г (Q 1 + Q 2 ) ,

    • гдеИ – коэффициент использования насоса;
    • Q СИСТ − расход воды гидроэлеваторной системой (л/с);
    • Q Н − подача насоса пожарного автомобиля (л/с);
    • N Г − число гидроэлеваторов в системе (шт.);
    • Q 1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
    • Q 2 = 10 л/с − подача одного гидроэлеватора.

    При И < 1 система будет работать, при И = 0,65-0,7 будет наиболее устойчивая совместная и насоса.

    Следует иметь в виду, что при заборе воды с больших глубин (18-20м) необходимо создавать на насосе напор 100 м. В этих условиях рабочий расход воды в системах будет повышаться, а расход насоса – понижаться против нормального и может оказаться, что сумма рабочего и эжектируемого расходов превысит расход насоса. В этих условиях система работать не будет.

    3) Определим условную высоту подъема воды Z УСЛ для случая, когда длина рукавных линий ø77 мм превышает 30 м:

    Z УСЛ = Z Ф + N Р · h Р (м),

    гдеN Р − число рукавов (шт.);

    h Р − дополнительные потери напора в одном рукаве на участке линии свыше 30 м:

    h Р = 7 м при Q = 10,5 л/с , h Р = 4 м при Q = 7 л/с , h Р = 2 м при Q = 3,5 л/с .

    Z Ф фактическая высота от уровня воды до оси насоса или горловины цистерны (м).

    4) Определим напор на насосе АЦ:

    При заборе воды одним гидроэлеватором Г−600 и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют по табл. 1.

    Определив условную высоту подъема воды, находим напор на насосе таким же образом по табл. 1 .

    5) Определим предельное расстояние L ПР по подаче огнетушащих средств:

    L ПР = (Н Н – (Н Р ± Z М ± Z СТ ) / SQ 2 ) · 20 (м) ,

    • где H Н напор на насосе пожарного автомобиля, м;
    • Н Р напор у разветвления (принимается равным: Н СТ + 10) , м;
    • Z М высота подъема (+) или спуска (−) местности, м;
    • Z СТ − высота подъема (+) или спуска (−) стволов, м;
    • S − сопротивление одного рукава магистральной линии
    • Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.

    Таблица 1.

    Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.

    95 70 50 18 105 80 58 20 – 90 66 22 – 102 75 24 – – 85 26 – – 97

    6) Определим общее количество рукавов в выбранной схеме:

    N Р = N Р.СИСТ + N МРЛ,

    • где N Р.СИСТ − число рукавов гидроэлеваторной системы, шт;
    • N МРЛ − число рукавов магистральной рукавной линии, шт.

    Примеры решения задач с использование гидроэлеваторных систем

    Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.

    Решение:

    Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600

    2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.

    N Р = 1,2· (L + Z Ф) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4

    Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.

    3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.

    V СИСТ = N Р ·V Р ·K = 8· 90 · 2 = 1440 л < V Ц = 2350 л

    Следовательно воды для запуска гидроэлеваторной системы достаточно.

    4) Определяем возможность совместной работы гидроэлеваторной системы и насоса автоцистерны.

    И = Q СИСТ / Q Н = N Г (Q 1 + Q 2) / Q Н = 1·(9,1 + 10) / 40 = 0,47 < 1

    Работа гидроэлеваторной системы и насоса автоцистерны будет устойчивой.

    5) Определяем необходимый напор на насосе для забора воды из водоема с помощью гидроэлеватора Г−600.

    Поскольку длина рукавов к Г−600 превышает 30 м, сначала определяем условную высоту подъема воды: Z

  • 5.2 Основные геометрические и физико-химические параметры пожара и формулы для их определения
  • 5.3. Физико-химические свойства некоторых веществ и материалов
  • 5.4. Линейная скорость распространения горения
  • 5.5. Воздействие офп на человека и их допустимые значения
  • 6. Прекращение (ликвидация) горения.
  • 6.1. Условия прекращения горения
  • 6.2. Способы прекращения горения
  • 6.3. Огнетушащие средства – виды, классификация.
  • 6.4. Огнетушащие вещества и материалы
  • 7. Параметры тушения пожара
  • 7.1. Интенсивность подачи огнетушащих средств
  • 7.2. Расходы огнетушащих средств на пожаротушение
  • 7.2.1. Расход огнетушащего средства
  • 7.2.2. Расход воды из пожарных стволов
  • 7.2.3. Нормативные расходы воды, установленные «Техническим регламентом о требованиях пожарной безопасности»
  • 7.3. Время (периоды) тушения пожара
  • 7.4. Площадь тушения (тушение по площади)
  • 7.5. Тушение по объёму (объёмное тушение)
  • 9. Тактико-технические данные пожарной техники.
  • 9.1. Классификация пожарной техники и главные параметры пожарных автомобилей.
  • Структурная схема обозначений пожарных автомобилей:
  • 9.2. Тактико-техническая характеристика пожарных насосов
  • 9.3. Основные пожарные автомобили
  • 9.4. Тактико-технические характеристики основных пожарных автомобилей общего применения
  • 9.4.1. Пожарные автоцистерны.
  • 9.4.2. Пожарные автоцистерны с лестницей (ацл), пожарные автоцистерны с коленчатым подъемником, пожарно-спасательные автомобили.
  • 9.4.3. Пожарных автомобилей первой помощи (апп)
  • 9.4.4. Пожарные насосно-рукавные автомобили.
  • 9.5. Тактико-технические характеристики основных пожарных автомобилей целевого применения
  • 9.5.1. Пожарные автомобили порошкового тушения (ап).
  • 9.5.2. Пожарные автомобили пенного тушения.
  • 9.5.3. Пожарные автомобили комбинированного тушения.
  • 9.5.4. Пожарные автомобили газового тушения.
  • 9.5.5. Пожарные автомобили газоводяного тушения.
  • 9.5.6. Пожарные автонасосные станции.
  • 9.5.7. Пожарные пеноподъёмники.
  • 9.5.8. Пожарные аэродромные автомобили.
  • 9.6. Тактико-технические характеристики специальных пожарных автомобилей
  • 9.6.1. Пожарные автолестницы
  • 9.6.2. Пожарные коленчатые автоподъёмники
  • 9.6.3. Пожарный аварийно – спасательный автомобиль
  • 9.6.4. Пожарные автомобили газодымозащитной службы
  • 9.6.5. Пожарные автомобили связи и освещения
  • 9.6.6. Пожарные рукавные автомобили
  • 9.6.7. Пожарный водозащитный автомобиль
  • 9.6.8. Пожарный автомобиль дымоудаления
  • 9.6.9. Пожарный штабной автомобиль
  • 9.6.10. Автомобиль отогрева пожарной техники
  • 9.6.11. Пожарная компрессорная станция
  • 9.6.12. Другие типы специальных пожарный автомобилей
  • 9.7. Переносные и прицепные пожарные мотопомпы
  • 9.8. Сизод и воздушные компрессоры
  • 9.8.1. Аппараты дыхательные со сжатым воздухом
  • 9.8.2. Аппараты дыхательные со сжатым кислородом
  • 9.8.3. Компрессорные установки
  • 9.9. Стволы (водяные, пенные, лафетные, генераторы)
  • 9.9.1. Стволы ручные
  • 9.9.2. Стволы лафетные
  • 9.9.3. Стволы лафетные с дистанционным управлением и роботизированные
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • 9.10. Рукава (напорные, всасывающие)
  • 9.11. Ручные пожарные лестницы.
  • 9.12. Средства связи
  • 9.13. Специальная защитная одежда
  • 9.14. Высокотехнологичные средства тушения и робототехнические комплексы
  • Мобильный робототехнический комплекс разведки и пожаротушения
  • 10. Основы расчёта сил и средств для тушения пожаров.
  • 10.1. Проведение расчета сил и средств для тушения пожара
  • 10.2. Расчёты по забору и подаче воды из противопожарных резервуаров и водоёмов
  • 10.2.1. Расчёт гидроэлеваторных систем.
  • 10.3. Определение напоров на насосе при подаче воды и раствора пенообразователя на тушение
  • 10.4. Проведение расчётов по подаче воды к месту пожара
  • 10.4.1. Подача воды в перекачку
  • 10.4.2. Подвоз воды автоцистернами
  • 10.5. Особенности тушения пожаров на различных объектах
  • 10.5.1. Подача воды на тушение в зданияхповышенной этажности
  • 10.5.2. Тушение в зданияхповышенной этажности с использованием универсальных стволов.
  • 10.5.3.Тушение пожаров нефти и нефтепродуктов в резервуарах
  • 10.5.3.Тушение пожаров на открытых технологических установках
  • 11. Этапы боевого развёртывания.
  • 12. Нормативы по пожарно-строевой подготовке (извлечения).
  • 13. Сигналы управления
  • 7.5. Тушение по объёму (объёмное тушение)

    Для объемного тушения пожаров подразделениями пожарной охраны используются, как правило, генераторы пены средней кратности. Требуемое число генераторов в объёме помещения рассчитывается:

    – число генераторов, шт;

    V п – объем помещения, заполняемый пеной, м 3 ;

    K з – коэффициент, учитывающий разрушение и потерю пены;

    – расход пены из пеногенератора, м 3 мин -1 ;

    – расчетное время тушения пожара, мин.

    Требуемое количество пенообразователя на тушение пожара определяется по формуле.

    (50)

    где
    – общий расход пенообразователя, л;

    – расход определяемого огнетушащего вещества, пенообразователя,

    Объем, который можно заполнить одним генератором пены средней кратности, вычисляют по формуле:

    =
    τ р /К з; (51)

    – возможный объем тушения пожара одним генератором ГПС, м 3 ;

    – подача (расход) генератора по пене, м 3 /мин (см. табл. 133);

    τ р – расчетное время тушения пожара, мин (при тушении пеной средней кратности принимается 10...15 мин);

    К з – коэффициент, учитывающий разрушение и потерю пены (обычно принимается равным 3, а при расчете стационарных систем – 3,5).

    Необходимое количество генераторов при известном объеме заполнения пеной одним генератором определяют по формулам:

    =/
    (52)

    – число генераторов ГПС-600, шт.;

    –объем помещения, заполняемый пеной, м 3 .

    Таблица 66

    Требуемое число генераторов ГПС для объемного тушения пожаров

    Требуется на тушение

    Объем, заполняемый пеной, м 3

    Требуется на тушение

    пенообразователя, л

    пенообразователя, л

    В практических расчетах по определению требуемого числа генераторов для объемного тушения пеной можно пользоваться табл. 66 или помнить, что один ГПС-600 обеспечивает тушение 120 м 3 , ГПС-2000 –400 м 3 , ПГУ на базе ПД-7 –300 м 3 , а ПГУ на базе ПД-30 – 700 м 3 . За 10 мин тушения пожара один ГПС-600 расходует 210 л пенообразователя, а ГПС-2000 – 720 л.

    8. Гидравлические характеристики водопроводной сети и напорных пожарных рукавов

    Таблица 67

    Водоотдача водопроводных сетей

    Напор в сети, м

    Вид водопроводной сети

    Водоотдача водопроводной сети, л/с, при диаметре трубы, мм

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Скорость движения воды по трубам зависит от их диаметра, а также от напора, и может быть определена по таблице 68. Водоотдача тупиковых водопроводных сетей примерно на 0,5 меньше кольцевых.

    Таблица 68

    Скорость движения воды по трубам

    Напор в сети, м

    Скорость движения воды, м/с, при диаметре трубы, мм

    В период эксплуатации водопроводных сетей диаметр труб уменьшается за счет коррозии и отложений на их стенках, поэтому для выявления фактических расходов воды из трубопроводов их испытывают на водоотдачу. Существует два способа испытания водопроводов на водоотдачу. В первом случае на пожарные гидранты устанавливают пожарные автомобили и через стволы при рабочем напоре определяют максимальный расход воды, или на гидранты устанавливают пожарные колонки, открывают шиберы, а затем аналитически определяют расход при существующем напоре в водопроводе. Для определения водоотдачи сети в наихудших условиях испытания проводят в период максимального водопотребления.

    Испытание водопроводных сетей вторым способом производят путем оборудования пожарной колонки двумя отрезками труб длиной 500 мм, диаметром 66 или 77 мм (2,5 или 3”) с соединительными головками и на корпусе колонки устанавливают манометр. Полный расход из колонки слагается по сумме расходов через два патрубка, а водоотдача сети определяется по суммарному расходу воды из нескольких колонок, установленных на пожарные гидранты испытуемого участка водопровода.

    При небольшой водоотдаче водопроводных сетей можно пользоваться одним патрубком колонки, а к другому присоединить заглушку с манометром.

    Расход воды через пожарную колонку определяют по формуле

    , (53)

    – расход воды через колонку, л/с;

    Н – напор воды в сети (показание манометра), м;

    Р – проводимость колонки (см. табл. 69).

    Таблица 69

    Число открытых патрубков колонки

    Среднее значение проводимости

    Один патрубок диаметром 66 мм

    Один патрубок диаметром 77 мм

    Два патрубка диаметром 66 мм

    Таблица 70

    Расход воды через один патрубок пожарной колонки

    в зависимости от напора у гидранта

    Расход воды через один патрубок колонки указан в таблице 70. На участках водопроводных сетей с малыми диаметрами (100... 25 мм) и незначительным напором (10...15 м) забор воды осуществляют насосом из колодца с помощью всасывающей линии, заполняя его водой из гидранта на излив. В этих случаях расход воды из гидранта несколько больше расхода воды, забираемого насосом через колонку.

    Таблица 71

    Объем одного рукава длиной 20 м в зависимости от его диаметра:

    Таблица 72

    Сопротивление одного напорного рукава длиной 20 м

    Диаметр рукава, мм

    Прорезиненные

    Непрорезиненные

    Таблица 73

    Потери напора в одном пожарном рукаве магистральной линии длиной 20 м

    Диаметр рукава, мм

    Количество и тип стволов

    Потери напора в рукаве, м

    Количество и

    тип стволов

    Потери напора в рукаве, м

    Прорезиненном

    Непрорезиненном

    Прорезиненном

    Непрорезиненном

    Один ствол Б

    Один ствол Б

    Один ствол А

    Два ствола Б

    Два ствола Б

    Три ствола Б

    Три ствола Б

    Один ствол А

    и один ствол Б

    Один ствол А

    и один ствол Б

    Два ствола Б

    и один ствол А

    Два ствола Б

    и один ствол А

    Примечание. Показатели таблицы даны при напоре у ствола 40 м и расходе воды из ствола А с диаметром насадка 19 мм – 7,4 л/с, а с диаметром насадка 13 мм – 3,7 л/с.

    Таблица 74

    Потери напора в одном рукаве при полной пропускной способности воды

    Таблица 75

    Потери напора в пожарных рукавах на 100 м длины (100 i, м)

    Расход воды, л/с

    прорезиненные диаметром, мм

    непрорезиненные диаметром, мм

    Государственный Стандарт Российской Федерации

    Пенообразователи для тушения пожаров

    Общие технические требования
    и методы испытаний

    ГОСТ Р 50588-93

    Плотность при 20°С, кг/м 3

    устанавливается в НТД

    По ГОСТ 18995.1

    Кинематическая вязкость, при 20°С, мм 2 ·с -1 , не более

    По ГОСТ 33

    Водородный показатель (рН)

    По ГОСТ 22567.5

    Температура застывания, °С, не выше

    По ГОСТ 18995.5

    Показатель смачивающей способности, с, не более

    Не устанавливается

    Кратность пены:

    Низкая, не более

    Средняя, не менее

    Высокая, не менее

    Устойчивость пены низкой, средней и высокой кратности, с

    устанавливается в НТД

    Время тушения н-гептана при заданной интенсивности подачи рабочего раствора, с, не более:

    пеной низкой кратности при интенсивности (0,059±0,002), дм 3 /м 2 с;

    Не устанавливается

    пеной средней кратности при интенсивности, дм 3 /м 2 с;

    Не устанавливается

    Не устанавливается

    Не устанавливается

    Примечание . Норму интенсивности подачи для водорастворимых горючих жидкостей устанавливают в каждом конкретном случае.

    3. Требования безопасности

    3.2. Пенообразователи не должны оказывать канцерогенных и мутагенных воздействий на организм человека.

    3.3. Рабочие растворы пенообразователей должны быть безвредны. Составы, содержащие фторированные добавки, могут обладать слабым кумулятивным и кожно-резорбтивным действием.

    3.8. В процессе производства и использования пенообразователей не должны образовываться вторичные опасные соединения.

    3.9. Разрешается сброс биологически “мягких” пенообразователей (биоразлагаемость более 80 %) в производственные сточные воды при разбавлении их водой предельно допустимой концентрации ПАВ, равной 20 мг.л -1 по активному веществу.

    3.10. Запрещается сброс производственных сточных вод, содержащих биологически “жесткие” пенообразователи (биоразлагаемость не более 40 %), в систему канализации населенных пунктов.

    3.11. В процессе эксплуатации и хранения необходимо принимать меры, исключающие пролив пенообразователей.

    3.12. Слив остатков пенообразователей при промывке пенных коммуникаций, пеносмесителей, оборудования, емкостей для хранения в водоемы хозяйственно-питьевого и культурно-бытового водоиспользования не разрешается.

    4. Правила приемки

    4.1. Пенообразователи должны приниматься партиями. Партией считается любое количество пенообразователя единовременного изготовления, однородное по своим показателям качества, сопровождаемое одним документом о качестве.

    4.3. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему следует проводить повторные испытания пенообразователя на удвоенной выборке. Результаты повторных испытаний распространяют на всю партию.

    5. Методы испытаний

    5.1. Определение внешнего вида

    вода дистиллированная по ГОСТ 6709 (или модель морской воды).

    5.4.2. Подготовка к испытанию

    Готовят 4 дм 3 рабочего раствора в дистиллированной (морской) воде с температурой (20 ± 2)°С. Раствор заливают в бачок. Подают воздух и раствор в пеногенератор. Через 5-10 с после начала подачи пены отбирают пробу в сосуд для определения расхода. Фиксируют время набора пены. Отбор пробы следует проводить таким образом, чтобы мерный сосуд был заполнен равномерно по всему объему. Определяют массу пены взвешиванием сосуда до набора пены и после. Расход раствора вычисляют делением массы пены на время заполнения сосуда, расход воздуха - делением объема пены на время заполнения сосуда. Если расходы соответствуют заданным, то приступают к проведению испытания.

    Условия окружающей среды, при которой суммарная погрешность методики выполнения определений находится на уровне заданной, следующие: температура воздуха от 15 до 25°С, давление от 84 до 106,7 кПа, относительная влажность воздуха от 40 до 80 %.

    5.4.3. Проведение испытания

    После проверки работы пеногенератора заливают в горелку гептан высотой слоя (2,0 ± 0,1) см. Гептан зажигают и выдерживают время свободного горения (180 ± 5) с. Во время свободного горения пеногенератор должен находиться вне зоны пламени. Затем подают пену и вводят пеногенератор в зону горения, так, чтобы пена ложилась в центр горелки, поддерживая заданные расходы раствора и воздуха. Одновременно с вводом включают секундомер и измеряют время тушения, т.е. время от начала подачи пены в горелку до прекращения горения гептана.

    Проводят три опыта. При успешном тушении в первых двух опытах третий опыт не проводят.

    Для определения критической интенсивности подачи раствора пенообразователя размеры горелок подбирают таким образом, чтобы получить минимальный интервал между двумя значениями интенсивности подачи, при одном из которых время тушения составляет не более 300 с, а при другом оно превышает это значение, или тушение не наступает. Для каждой горелки проводят три опыта.

    Повторное использование гептана недопустимо.

    5.4.4. Обработка результатов

    За результат определения времени тушения пеной средней кратности при заданной интенсивности подачи раствора принимают среднее арифметическое результатов трех параллельных испытаний.

    Допустимое расхождение между результатами повторных испытаний, полученных одним оператором при постоянных условиях испытаний, с доверительной вероятностью 0,95, должно быть в пределах - ±15 %.

    Интенсивность подачи рабочего раствора для каждой горелки (1), дм 3 /м 2 ·с, рассчитывают по формуле

    где Q - расход раствора пенообразователя, дм 3 /с;

    S - площадь зеркала горючей жидкости, м 2 .

    Критическую интенсивность (I кр ), дм 3 /м 2 ·с, рассчитывают по формуле

    где Iт - интенсивность, при которой время тушения превышает 300 с или тушение не достигнуто, дм 3 /м 2 ·с;

    I min - минимальная интенсивность, при которой время тушения не превышает 300 с, дм 3 /м 2 ·с.

    За результат определения критической,(минимальной) интенсивности подачи раствора принимают значение интенсивности, равное среднему арифметическому результату трех испытаний.

    Допустимое расхождение между результатами повторных испытаний, полученных одним оператором при постоянных условиях испытаний с доверительной вероятностью 0,95, должно быть в пределах ±10 %.

    5.5. Определение времени тушения пеной средней кратности

    1.2. Подготовка к испытанию

    Между цилиндрической частью и стоком устанавливают фильтр. В качестве фильтра используют один слой ткани, вырезанный в виде круга диаметром не менее 34 мм.

    В цилиндре готовят раствор пенообразователя предполагаемой рабочей концентрации. Температура воздуха и раствора (20 ± 2)°С.

    1.3. Проведение испытания

    Пипеткой отбирают 10 см 3 приготовленного раствора и заливают его в мензурку. Затем выливают раствор в полый цилиндр устройства и включают секундомер, определяя время до появления первой капли раствора.

    Для определения рабочей концентрации пенообразователя необходимо определить минимальную концентрацию, при которой время, прошедшее с момента налива испытуемого раствора в полый цилиндр до появления первой капли, составит (8 ± 1) с.

    Повторное использование фильтров и растворов пенообразователя недопустимо.

    1.4. Обработка результатов

    За результат испытания принимают среднее арифметическое двух параллельных определений. Допустимое расхождение между результатами повторных испытаний, полученными одним оператором при постоянных условиях испытания с доверительной вероятностью 0,95, не должно превышать 0,5 с.

    Приложение 2
    (Рекомендуемое)
    1. Определение кратности и устойчивости пены высокой и средней кратности в лабораторных условиях

    1.1. Аппаратура, реактивы, материалы

    Для получения пены высокой и средней кратности используют установки, показанные на черт. 8 и 9, соответственно.

    В комплект установки (черт. 8) входят: источник сжатого воздуха, краны, трубка для создания давления в сосуде с раствором пенообразователя, заслонка с отверстием для регулирования воздуха, пенообразующие сетки, прямоугольная емкость для сбора пены высотой 0,5 м вместимостью 50 дм 3 , трубка для подачи раствора пенообразователя, клапан для регулирования давления в сосуде, прибор для контроля давления, цилиндры по ГОСТ 1770 вместимостью 100 мл и ценой деления 1 мл, термометр по ГОСТ 28498 с диапазоном измерения от 0 до 100°C и ценой деления 1°С.

    Схема установки для получения лены высокой кратности

    Пипетка 2-1-50 ГОСТ 20292.

    Посуда для приготовления модели морской воды и растворов пенообразователей.

    Для приготовления растворов пеноообразователей используют дистиллированную воду по ГОСТ 67С9.

    Модель морской воды, используемой для приготовления растворов пенообразователей, содержит, % (масс.):

    магний хлористый, 6-водный по ГОСТ 42091,10

    кальций хлористый, 2-водный0,16

    натрий сернокислый, безводный по ГОСТ 41660,40

    натрий хлористый по ГОСТ 4233 2,50

    вода питьевая по ГОСТ 2874 до 100

    1.2. Подготовка к испытанию

    Перед проведением опытов на установке для получения пены высокой кратности (черт. 8) емкость для сбора пены должна быть смочена раствором пенообразователя. Для этого емкость заполняют пеной и, не дожидаясь разрушения, удаляют ее лопаткой.

    Готовят 0,5 дм 3 раствора пенообразователя требуемой концентрации при температуре (20 ± 2)°С. Приготовленный раствор заливают в сосуд вместимостью 0,4 дм 3 через цилиндр до риски на горловине при открытом кране 10 и закрывают кран 15. Заполняют цилиндр 16 до верхней отметки шкалы. Кран 2 закрывают.

    Для получения пены средней кратности на установке (черт. 9) готовят 2 дм 3 рабочего раствора пенообразователя требуемой концентрации при температуре (20 ± 2)°С.

    Емкость для сбора пены смачивают раствором пенообразователя. Сняв крышку, заливают в сосуд 1 дм 3 раствора пенообразователя. Закрывают крышку, открывают клапан 13 и измеряют уровень раствора в мерной трубке, закрывают клапаны 5, 13 и кран 6. Открывают воздушный баллон и с помощью редукционного клапана устанавливают требуемое давление в сосуде 11, контролируемое манометром. Обычно испытания проводят при давлении 0,6 МПа.

    Условия окружающей среды, при которых суммарная погрешность, методики выполнения определений находится на уровне заданной, следующие: температура воздуха от 15 до 25°С, давление от 84 до 106,7 кПа, относительная влажность воздуха от 40 до 80 %.

    1.3. Проведение испытания

    В установке () включают воздуходувку и открывают кран 2. Когда емкость полностью заполняют пеной кран 2, закрывают и воздуходувку выключают. В момент окончания процесса ценообразования открывают кран 11 и включают секундомер для измерения времени разрушения объема пены. Для измерения времени выделения 50% жидкости секундомер включают с момента начала заполнения емкости пеной, Открывают кран 15 и перепускают раствор из мерного цилиндра 16 в сосуд до риски на его горловине. По разности начального и конечного уровней в цилиндре 16 определяют израсходованный раствор пенообразователя.

    Похожие публикации