Интернет-журнал дачника. Сад и огород своими руками

Сумма ряда фурье. Разложение в ряд Фурье четных и нечетных функций Неравенство Бесселя Равенство Парсеваля

Многие процессы, происходящие в природе и технике, обладают свойством повторяться через определенные промежутки времени. Такие процессы называются периодическими и математически описываются периодическими функциями. К таким функциям относятся sin (x ) , cos (x ) , sin (wx ), cos (wx ) . Сумма двух периодических функций, например, функция вида , вообще говоря, уже не является периодической. Но можно доказать, что если отношение w 1 / w 2 – число рациональное, то эта сумма есть периодическая функция.

Простейшие периодические процессы – гармонические колебания – описываются периодическими функциями sin (wx ) и cos (wx ). Более сложные периодические процессы описываются функциями, составными либо из конечного, либо из бесконечного числа слагаемых вида sin (wx ) и cos (wx ).

3.2. Тригонометрический ряд. Коэффициенты Фурье

Рассмотрим функциональный ряд вида:

Этот ряд называется тригонометрическим ; числа а 0 , b 0 , a 1 , b 1 2 , b 2 …, a n , b n ,… называются коэффициентами тригонометрического ряда. Ряд (1) часто записывается следующим образом:

. (2)

Так как члены тригонометрического ряда (2) имеют общий период
, то и сумма ряда, если он сходится, также является периодической функцией с периодом
.

Допустим, что функция f (x ) есть сумма этого ряда:

. (3)

В таком случае говорят, что функция f (x ) раскладывается в тригонометрический ряд. Предполагая, что этот ряд сходится равномерно на промежутке
, можно определить его коэффициенты по формулам:

,
,
. (4)

Коэффициенты ряда, определенные по этим формулам, называются коэффициентами Фурье.

Тригонометрический ряд (2), коэффициенты которого определяются по формулам Фурье (4), называются рядом Фурье , соответствующим функции f (x ).

Таким образом, если периодическая функция f (x ) является суммой сходящегося тригонометрического ряда, то этот ряд является ее рядом Фурье.

3.3. Сходимость ряда Фурье

Формулы (4) показывают, что коэффициенты Фурье могут быть вычислены для любой интегрируемой на промежутке

-периодической функции, т.е. для такой функции всегда можно составить ряд Фурье. Но будет ли этот ряд сходиться к функцииf (x ) и при каких условиях?

Напомним, что функция f (x ), определенная на отрезке [ a ; b ] , называется кусочно-гладкой, если она и ее производная имеют не более конечного числа точек разрыва первого рода.

Следующая теорема дает достаточные условия разложимости функции в ряд Фурье.

Теорема Дирихле. Пусть
-периодическая функцияf (x ) является кусочно-гладкой на
. Тогда ее ряд Фурье сходится кf (x ) в каждой ее точке непрерывности и к значению 0,5(f (x +0)+ f (x -0)) в точке разрыва.

Пример1.

Разложить в ряд Фурье функцию f (x )= x , заданную на интервале
.

Решение. Эта функция удовлетворяет условиям Дирихле и, следовательно, может быть разложена в ряд Фурье. Применяя формулы (4) и метод интегрирования по частям
, найдем коэффициенты Фурье:

Таким образом, ряд Фурье для функции f (x ) имеет вид.

Функцию f (x ), определëнную на отрезке и являющуюся на этом отрезке кусочно-монотонной и ограниченной, можно разложить в ряд Фурье двумя способами. Для этого достаточно представить продолжение функции на промежуток [–l , 0]. Если продол­жение f (x ) на [–l , 0] чётное (симметричное относительно оси ординат), то ряд Фурье можно записать по формулам (1.12–1.13), то есть по косинусам. Если продолжить функцию f (x ) на [–l , 0] нечётным образом, то разложение функции в ряд Фурье будет представлено формулами (1.14–1.15), то есть по синусам. При этом оба ряда будут иметь в интервале (0, l ) одну и ту же сумму.

Пример. Разложить в ряд Фурье функцию y = x , заданную на промежутке (см. рис.1.4).

Решение .

a ). Разложение в ряд по косинусам. Строим чётное продолжение функции в соседний промежуток [–1, 0]. График функции вместе с её чётным продолжением на [–1, 0 ] и последующим продолжением (по периоду T = 2) на всю ось 0x показан на рис.1.5.

Так как l = 1, то ряд Фурье для данной функции при чётном разложе­нии будет иметь вид

(1.18)

,

В результате получим при

На всей оси 0x ряд сходится к функции, изображенной на рис.1.4.

2). Разложение в ряд по синусам. Строим нечётное продолжение функции в соседний промежуток [–1, 0]. График функции вместе с её нечётным продолжением на [–1, 0] и последующим периодическим продолжением на всю числовую ось 0x показан на рис.1.6.

При нечëтном разложении

, (1.20)

.

Поэтому ряд Фурье по синусам для данной функции при
будет иметь вид

В точке
сумма ряда будет равна нулю, хотя исходная функция равна 1. Это обусловлено тем, что при таком периодическом продолжении точкаx = 1 становится точкой разрыва.

Из сравнения выражений (1.19) и (1.21) следует, что скорость сходимости ряда (1.19) выше, чем ряда (1.21): она определяется в первом случае множителем
, а во втором случае множителем ­1/n . Поэтому разложение в ряд по косинусам в данном случае пред­почтительнее.

В общем случае можно показать, что если функция f (x ) не обращается в нуль хотя бы на одном из концов промежутка , то предпочтительнее еë разложение в ряд по косинусам. Это обусловлено тем, что при чётном продолжении в соседний промежуток
функция будет непрерывной (см. рис.1.5), и скорость сходимости получающегося ряда будет выше, чем ряда по синусам. Если функция, заданная на , обращается в нуль на обоих концах интервала, то предпочти­тельнее её разложение в ряд по синусам, так как при этом будет непрерывной не только сама функция f (x ), но и её первая произ­водная.

1.6. Обобщённый ряд Фурье

Функции
и
(n , m = 1, 2, 3,…) называются ортогональными на отрезке [a , b ], если при n m

. (1.22)

При этом предполагается, что

и
.

Рассмотрим разложение функции f (x ), которая определена на отрезке [a , b ], в ряд по системе ортогональных функций

где коэффициенты (i = 0,1,2...) являются постоянными числами.

Для определения коэффициентов разложения умножим равенство (1.23) на
и проинтегрируем почленно на отрезке [a , b ]. Получим равенство

В силу ортогональности функций
все интегралы в правой части равенства будут равны нулю, кроме одного (при
). Отсюда следует, что

(1.24)

Ряд (1.23) по системе ортогональных функций, коэффициенты которого определяются по формуле (1.24), называется обобщённым рядом Фурье для функции f (x ).

Для упрощения формул для коэффициентов применяют, так называемое, нормирование функций . Система функций φ 0 (x ), φ 1 (x ),…, φ n (x ),… называется нор­ми­рованной на промежутке [a , b ], если

. (1.25)

Справедлива теорема: всякую ортогональную систему функ­­ций можно нормировать. Это означает, что можно подобрать постоянные числа μ 0 , μ 1 ,…, μ n ,… так, чтобы система функций μ 0 φ 0 (x ), μ 1 φ 1 (x ),…, μ n φ n (x ),… была не только ортогональной, но и нормированной. Действительно, из условия

получим, что

.

называется нормой функции
и обозначается через
.

Если система функций нормирована, то, очевидно,
. Последовательность функцийφ 0 (x ), φ 1 (x ),…, φ n (x ),…, опреде­лённых на отрезке [a , b ], является ортонормированной на этом отрезке, если все функции нормированы и взаимно ортогональны на [a , b ].

Для ортонормированной системы функций коэффициенты обобщённого ряда Фурье равны

. (1.26)

Пример. Разложить функцию y = 2 – 3x на отрезке
в обобщëнный ряд Фурье по системе ортогональных на этом отрезке функций, в качестве которых взять собственные функции задачи на собственные значения

предварительно проверив их на квадратичную интегрируемость и ортогональность.

Замечание. Говорят, что функция
, заданная на отрезке
, есть функция с интегрируемым квадратом, если она сама и еë квадрат интегрируемы на
, то есть, если существуют интегралы
и
.

Решение. Сначала решаем задачу на собственные значения. Общее решение уравнения этой задачи будет

а его производная запишется в виде

Поэтому из граничных условий следует:

Для существования нетривиального решения необходимо принять

,

откуда следует
Поэтому собственные значения параметра равны

,

а соответствующие им собственные функции с точностью до множителя будут

. (1.27)

Проверим полученные собственные функции на ортогональность на отрезке :

так как при целых
.При этом

Следовательно, найденные собственные функции ортогональны на отрезке .

Разложим заданную функцию в обобщëнный ряд Фурье по системе ортогональных собственных функций (1.27):

, (1.28)

коэффициенты которого вычисляются по (1.24):

. (1.29)

Подставляя (129) в (1.28), окончательно получим

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Похожие публикации