Интернет-журнал дачника. Сад и огород своими руками

Самый распространенный металл в коре. Самый распространенный металл на земле. Распространенность металлов в земной коре

Металлы представляют собой группу элементов, которые обладают такими уникальными свойствами, как электропроводность, высокая теплопередача, положительный коэффициент сопротивления, характерный блеск и относительная пластичность. Данный вид веществ является простым по химическим соединениям.

Классификация по группам

Металлы относятся к самым распространенным материалам, которые используются человечеством на протяжении всей его истории. Большинство из них находится в средних слоях земной коры, но есть и те, что спрятаны глубоко в горных залежах.

На данный момент металлы занимают большую часть таблицы Менделеева (94 из 118 элементов). Из официально признанных стоит отметить следующие группы:

1. Щелочные (литий, калий, натрий, франций, цезий, рубидий). При контакте с водой они образуют гидроксиды.

2. Щелочноземельные (кальций, барий, стронций, радий). Отличаются плотностью и твердостью.

3. Легкие (алюминий, свинец, цинк, галлий, кадмий, олово, ртуть). Из-за незначительной плотности часто используются в сплавах.

4. Переходные (уран, золото, титан, медь, серебро, никель, железо, кобальт, платина, палладий и пр.). Обладают изменчивой степенью окисления.

5. Полуметаллы (германий, кремний, сурьма, бор, полоний и др.). В своей структуре имеют кристаллическую ковалентную решетку.

6. Актиноиды (америций, торий, актиний, берклий, кюрий, фермий и пр.).

7. Лантаноиды (гадолиний, самарий, церий, неодим, лютеций, лантан, эрбий и др.).

Стоит отметить, что есть металлы в земной коре и такие, которые не определены в группы. К ним относят магний и бериллий.

Самородные соединения

В природе существует отдельный класс кристаллохимической кодификации. К таким элементам относят самородные минералы по составу между собой не связанные. Чаще всего самородные металлы в природе образуются в результате геологических процессов.

В кристаллическом состоянии в земной коре известны 45 веществ. Большинство из них в природе встречается крайне редко, отсюда и их высокая стоимость. Доля таких элементов составляет всего 0,1 %. Стоит отметить, что нахождение этих металлов также является трудоемким и недешевым процессом. Он основывается на использовании атомов с устойчивыми оболочками и электронами.

Самородные металлы называются также благородными. Для них характерны химическая инерция и устойчивость соединений. К таковым относят золото, палладий, платину, иридий, серебро, рутений и пр. Чаще всего в природе встречается медь. Железо в самородном состоянии присутствует в основном в горных залежах в виде метеоритов. Самыми редкими элементами группы являются свинец, хром, цинк, индий и кадмий.

Основные свойства

Практически все металлы в нормальных условиях отличается твердостью и стойкостью. Исключение - франций и ртуть, щелочные для всех элементов группы разная. Ее диапазон колеблется от -39 до +3410 градусов по Цельсию. Самым устойчивым к плавлению считается вольфрам. Его соединения теряют стойкость только при +3400 С. Из легкорасплавляемых металлов следует выделить свинец и олово.

Также элементы делятся относительно плотности (легкие и тяжелые) и пластичности (твердые и мягкие). Все металлические соединения отлично проводят ток. Данное свойство обуславливается наличием кристаллических решеток с активными электронами. Максимальную проводимость имеют медь, серебро и алюминий, чуть меньшую - натрий. Стоит отметить и высокие термические свойства металлов. Наилучшим теплопроводником считается серебро, наихудшим - ртуть.

Металлы в окружающей среде

Чаще всего такие элементы можно встретить в и руд. Металлы в природе образуют сульфиты, оксиды, карбонаты. Для очищения соединений сперва необходимо выделить их из состава руды. Следующим шагом будет легирование и финальная обработка.

В промышленной металлургии различаются черные и цветные руды. Первые строятся на основе железных соединений, вторые - на прочих металлах. Драгоценными металлами считаются платина, золото и серебро. Большая их часть находится в земной коре. Тем не менее, малая доля приходится и на морскую воду.

Есть благородные элементы даже в живых организмах. В человеке содержится около 3 % металлических соединений. По большей степени в организме находятся натрий и кальций, которые выступают в роли межклеточного электролита. Магний необходим для нормальной работы ЦНС и мышечной массы, железо полезно для крови, медь - для печени.

Нахождение металлических соединений

Большинство элементов располагается под верхним слоем грунта повсеместно. Самый распространенный металл в земной коре - это алюминий. Его процентное содержание варьируется в пределах 8,2 %. Найти самый распространенный металл в земной коре несложно, так как он встречается в виде руд.

Железо и кальций в природе встречают чуть реже. Их процентное содержание равно 4,1 %. Далее идут магний и натрий - по 2,3 %, калий - 2,1 %. Остальные металлы в природе занимают не более 0,6 %. Примечательно, что магний и натрий в равной степени можно добывать как в земле, так и в морской воде.

Металлические элементы в природе встречаются в виде руд или в самородном состоянии, как медь или золото. Есть вещества, которые нужно получать из оксидов и сульфидов, например, гематит, каолин, магнетит, галенит и пр.

Производство металлов

Процедура добычи элементов сводится к извлечению полезных ископаемых. Нахождение металлов в природе в виде руд является самым простым и распространенным процессом в широкой промышленности. Для поиска кристаллических залежей используется специальное геологическое оборудование, анализирующее состав веществ на конкретном участке земли. Реже нахождение металлов в природе сводится к банальному открыто-подземному методу.

После добычи наступает этап обогащения, когда из исходного минерала выделяется рудный концентрат. Для отличия элементов используют смачивание, электрический ток, химические реакции, термообработку. Чаще всего выделение металлический руды происходит в результате плавления, то есть разогрева с восстановлением.

Добыча алюминия

Данным процессом занимается цветная металлургия. По масштабам потребления и производства она является лидером среди прочих отраслей тяжелой промышленности. Самый распространенный металл в земной коре очень востребован в современном мире. По объему производства алюминий уступает только стали.

Больше всего данный элемент используется в авиационной, автомобильной и электротехнической промышленности. Примечательно, что самый распространенный металл в земной коре можно получить и «искусственным» путем. Для такой химической реакции потребуются бокситы. Из них формируется глинозем. При соединении этого вещества с угольными электродами и фтористой солью под действием электрического тока можно получить чистейшую

Страной-лидером среди производителей данного компонента является Китай. В год там выплавляется до 18,5 млн тонн металла. Компанией-лидером в аналогичном рейтинге по добыче алюминия является российско-швейцарское объединение UC RUSAL.

Применение металлов

Все элементы группы отличаются прочностью, непроницаемостью и относительной устойчивостью к температурному воздействию. Именно поэтому металлы столь распространены в повседневной жизни. Сегодня из них делают электрические провода, резисторы, технику, предметы обихода.

Металлы являются идеальным конструкционными и В строительстве используют чистые и комбинированные сплавы. В машиностроении и авиации главными соединениями являются сталь и более твердые связи.

Металлы малой химической активности (Cu, Ag, Au, Pt, Hg) встречаются в свободном виде или в виде вкраплений в горные породы. Большая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические вещества. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия, которая различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: т.н. благородные металлы (золото серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей.

Кроме того, в малых количествах они присутствуют в морской воде (1,05%, -- 0,12%), растениях, живых организмах (играя при этом важную роль).

В природе металлы встречаются:

  • -- в самородном состоянии: серебро, золото, платина, медь, иногда ртуть;
  • -- в виде оксидов: магнетит Fe 3 O 4 , гематит Fe 2 О 3 и др.
  • -- в виде смешанных оксидов: каолин Аl 2 O 3 * 2SiO 2 * 2Н 2 О, алунит (Na,K) 2 O * АlО 3 * 2SiO 2 и др.
  • -- различных солей:

сульфидов: галенит PbS, киноварь НgS,

хлоридов: сильвин КС1, галит NaCl, сильвинит КСl* NаСl, карналлит КСl * МgСl 2 * 6Н 2 О,

сульфатов: барит ВаSO 4 , ангидрид Са 8 О 4

фосфатов: апатит Са 3 (РО 4) 2 ,

карбонатов: мел, мрамор СаСО 3 , магнезит МgСО 3 .

Так, основная масса алюминия сосредоточена в алюмосиликатах, из которых наиболее распространены полевые шпаты. Главные их представители - минералы ортоклаз K, альбит Na и анорит Са . Очень распространены минералы группы слюд, например, мусковит Kal 2 2 , большое практическое применение имеет минерал нефелин (Na, K) 2 (используется для получения глинозема, содовых продуктов и цемента). Из других минералов наибольшее практическое распространение находят боксит Al 2 O 3 *nH 2 O и криолит Na 3 AlF 6 . Распространенным продуктом разрушения горных пород является каолин, состоящий в основном из глинистого минерала каолинита Al 2 O 3 *2SiO 2 *2H 2 O.

Большая часть кальция встречается в природе в виде отложений известняков и мела, состоящих в основном из минерала кальцита CaCO 3 , а также мрамора. Из других пород наиболее распространены доломит CaCO 3 *MgCO 3 , ангидрит CaSO 4 и гипс CaSO 4 *2H 2 O, флюорит CaF 2 и апатит 3Ca 3 (PO 4) 2 *Ca(F, Cl) 2 . В немалых количествах встречается кальций в различных силикатах, например CfO*3MgO*4SiO 2 (асбест), и алюмосиликатах.

Магний распространен в природе в виде магнезита MgCO 3 и доломита, силиката Mg 2 SiO 4 (оливин), каинита KCl*MgSO 4 *3H 2 O и карналлита KCl*MgCl 2 *6H 2 O. Природными соединениями щелочных металлов являются сильвинит NaCl*KCl, галит NaCl, мирабилит Na 2 SO 4 *10H 2 O.

Железо - самый распространенный после алюминия металл на земном шаре. Оно входит в состав многочисленных минералов, образующих скопления железных руд: гематита Fe 2 O 3 , магнетита Fe 3 O 4 , гидрогетита HFeO 2 *nH 2 O, сидерита FeCO 3 и др.

Изредка встречаются и самородное железо метеорного или земного происхождения.

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий -- в качестве примеси в цинковые руды, ниобий и тантал -- в оловянные. Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.

Как ни странно - алюминий

Самым распространенным металлом на земле является алюминий. Алюминий (лат. Aluminium), Al - химический элемент III группы периодической системы Менделеева. Атомный номер 13, атомная масса 26,9815. Серебристо-белый легкий металл. Состоит из одного стабильного изотопа 27 Al .

Историческая справка

Название Алюминий происходит от лат. alumen - так еще за 500 лет до н. э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленный способ производства Алюминия предложил в 1854 французский химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Распространение Алюминия в природе

По распространенности в природе Алюминий занимает 3-е место после кислорода и кремния и 1-е - среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде Алюминий в силу своей химической активности не встречается. Известно несколько сотен минералов Алюминия, преимущественно алюмосиликатов. Промышленное значение имеют боксит, алунит и нефелин. Нефелиновые породы беднее бокситов глиноземом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная кислота. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности.

Физические свойства Алюминия

Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20°С) 2698,9 кг/м 3 ; t пл 660,24°С; t кип около 2500°С; коэффициент термического расширения (от 20° до 100°С) 23,86·10 -6 ; теплопроводность (при 190°С) 343 вт/м·К , удельная теплоемкость (при 100°С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50-60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость - до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства Алюминия

Внешняя электронная оболочка атома Алюминия состоит из 3 электронов и имеет строение 3s 2 3р 1 . В обычных условиях Алюминий в соединениях 3-валентен, но при высоких температурах может быть одновалентным, образуя так называемых субсоединения. Субгалогениды Алюминия, AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении температуры распадаются (диспропорционируют) на чистый Аl и AlF 3 или АlСl 3 и поэтому могут быть использованы для получения сверхчистого Алюминия. При накаливании мелкоизмельченный или порошкообразный Алюминий энергично сгорает на воздухе. Сжиганием Алюминия в токе кислорода достигается температура выше 3000°С. Свойством Алюминия активно взаимодействовать с кислородом пользуются для восстановления металлов из их оксидов (Алюминотермия). При темно-красном калении фтор энергично взаимодействует с Алюминием, образуя AlF 3 . Хлор и жидкий бром реагируют с Алюминием при комнатной температуре, иод - при нагревании. При высокой температуре Алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al 4 C 3 и сульфид Al 2 S 3 . С водородом Алюминий не взаимодействует; гидрид Алюминия (AlН 3) X получен косвенным путем. Большой интерес представляют двойные гидриды Алюминия и элементов I и II групп периодической системы состава МеН n · n AlH 3 , так называемые алюмогидриды. Алюминий легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей Алюминия хорошо растворимо в воде. Растворы солей Алюминия вследствие гидролиза показывают кислую реакцию.

Получение Алюминия

В промышленности Алюминий получают электролизом глинозема Аl 2 О 3 , растворенного в расплавленном криолите NasAlF 6 при температуре около 950° С. Используются электролизеры трех основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожженными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом - огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объем заполняется расплавленным электролитом, состоящим из 6-8% глинозема и 94-92% криолита (обычно с добавкой AlF 3 и около 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом - погруженные в электролит угольные обожженные блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный Алюминий, который накапливается на подине, а на аноде - кислород, образующий с угольным анодом CO и CO 2 . К глинозему, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нем оксидов более электроположительных элементов, чем Алюминий, ведет к загрязнению Алюминия. При достаточном содержании глинозема ванна работает нормально при электрическом напряжении порядка 4-4,5 В. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 кА. Из ванн Алюминий извлекают обычно с помощью вакуум-ковша. Расплавленный Алюминий чистотой 99,7% разливают в формы. Алюминий высокой чистоты (99,9965%) получают электролитическим рафинированием первичного Алюминия с помощью так называемых трехслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитического рафинирования Алюминия с применением органических электролитов показали принципиальную возможность получения Алюминий чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки Алюминий применяют зонную плавку или дистилляцию его через субфторид.

Применение Алюминия

При электролитическом производстве Алюминия возможны поражения электрическим током, высокой температурой и вредными газами. Для избежания несчастных случаев ванны надежно изолируют, рабочие пользуются сухими валенками, соответствующей спецодеждой. Здоровая атмосфера поддерживается эффективной вентиляцией. При постоянном вдыхании пыли металлического Алюминия и его оксида может возникнуть алюминоз легких. У рабочих, занятых в производстве Алюминия, часты катары верхних дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая концентрация в воздухе пыли металлического Алюминий, его оксида и сплавов 2 мг/м 3 .

Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V ,применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

Алюминий в металлургии

В металлургии Алюминий (помимо сплавов на его основе)- одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Геохимия Алюминия

Геохимические черты Алюминия определяются его большим сродством к кислороду (в минералах Алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород Алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов - алюмосиликатов. В биосфере Алюминий- слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, Алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; Алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь Алюминия с кремнием частично нарушается и местами в тропиках образуются минералы - гидрооксиды Алюминия- бемит, диаспор, гидраргиллит. Большая же часть Алюминия входит в состав алюмосиликатов - каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление Алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, Алюминий почти не мигрирует. Наиболее энергична миграция Алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые Алюминием. В местах смещения кислых вод с щелочными - морскими (в устьях рек и других), Алюминий осаждается с образованием бокситовых месторождений.

Алюминий в организме

Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения - от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание Алюминия достигает 35-40 мг. Известны организмы - концентраторы Алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% Алюминия, моллюски (Helix и Lithorina), в золе которых 0,2-0,8% Алюминия. Образуя нерастворимые соединения с фосфатами, Алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

По материалам chem100.ru

По распространенности в природе первое место среди металлов занимает алюминий (А1): в земной коре его на 60 процентов больше, чем железа. Однако широко использовать его стали лишь во второй половине ХХ века. Дело в том, что извлечь алюминий из руд очень трудно. В 1825 году датский ученый Ханс Кристиан Эрстед (1777–1851) сумел выделить небольшое количество алюминия, но с примесями. После него многие химики безуспешно пытались очистить алюминий, но лишь в 1854 году француз Анри Этьенн Сент-Клер Девиль (1818–1881) нашел способ выделить чистый металл. Алюминий настолько химически активен, что пришлось использовать металлический натрий (еще более активный элемент), чтобы «уберечь» алюминий от вступления в реакцию с другими веществами. Алюминий, похожий по цвету на серебро, на первых порах ценился очень дорого – наравне с драгоценными металлами. С 1855 по 1890 год было получено всего 200 тонн алюминия. В то время только император Наполеон III мог позволить себе столовые приборы из алюминия и даже заказал погремушку из нового металла для своего юного наследника. А в США – в знак огромного уважения к основателю государства Джорджу Вашингтону – защитили его монумент сверху алюминиевым листом. Современный способ получения алюминия электролизом криолито-глиноземного расплава разработан в 1886 году.

Несмотря на то, что среди химических элементов преобладают металлы, по содержанию в природе они уступают неметаллам. Содержание всех металлов в земной коре около 25 масс. %, в то время как доля неметаллов, составляющих только 1/4 часть всех элементов, достигает 75 %. Правда следует заметить, что такую большую долю обеспечивают практически всего два неметалла: O (47,2 %) и Si (27,6 %).

Из металлов в природе более распространены Al (8,1%), Fe (5,1 %), а также Ca , Mg , Na , K . (суммарный % металлов s- блока равен 11).

Из 86 металлов только у шести содержание в земной коре превышает 1%.

  • Распространенность металлов в земной коре

  • В земной коре подавляющее большинство металлов находятся в окисленной форме .

    Металлы находятся в природе в форме соединений с более электроотрицательными элементами: кислородом, серой, галогенами, а также в виде карбонатов, фосфатов, сульфатов и др. Многие металлы находятся в земной коре в виде разнообразных силикатов и алюмосиликатов, сложных по составу и строению. Самыми распространенными минералами являются алюмосиликаты и силикаты самого разнообразного состава и строения. Эти минералы всегда присутствуют в любых рудах металлов. Кроме алюмосиликатов в природе достаточно распространены оксиды и карбонаты.
    Природные сульфиды используются для получения многих важных тяжелых цветных металлов: Cu, Zn, Pb, Ni, Co, Cd,Mo.

    Природные галогениды используют для получения Na, K, Mg.

    Кроме этого в природе существуют и минералы и других типов: сульфаты,фосфаты; вольфраматы: волфрамит - (Fe,Mn)WO 4 , шеелит -CaWO 4 ; хроматы- крокоит - PbCrO 4 , ванадинит - Pb 3 (VO 4)Cl 3 и др.

  • Природные соединения металлов s-блока

    Среди металлов s-блока в десятку наиболее распространенных элементов входят Ca, Na, K, Mg. Среди природных соединений этих металлов самую большую долю составляют разнообразные алюмосиликаты и силикаты, из которых в основном и состоит земная кора. При этом в состав силикатов и алюмосиликатов
    s-металлы входят в форме катионов. Наиболее распространенными минералами Li и Be являются алюмосиликаты: сподумен LiAl(SiO 3) 2 и берилл Be 3 Al 2 (Si 6 O 18), из которых получают литий и бериллий.

    Кроме алюмосиликатов в природе достаточно распространены карбонаты.

    Для получения Na, K, Mg используют, главным образом, природные галогениды. Известны и природные сульфаты.

  • Минералы металлов s-блока

  • s-блока

    Me Х Ме Минералы, используемые для промышленного получения металлов Масс.% Me в природе
    Li +1 Сподумен LiAl(SiO 3) 2 или Li 2 O . Al 2 O 3 . 4SiO 2 0,0032
    Na +1 Галит NaCl 2,8
    K +1 Сильвин KCl 2,6
    Be +2 Берилл Be 3 Al 2 (Si 6 O 18) или 3BeO . Al 2 O 3 . 6SiO 2 0,0006
    Mg +2 Карналлит MgCl 2 . KCl . 6H 2 Oб бишофит MgCl 2 . 6H 2 O 2,4
    Ca +2 Кальцит CaCO 3 3,6
    Sr +2 Целестин SrSO 4 0,04
    Ba +2 Барит BaSO 4 0,05
  • Природные соединения металлов р-блока, используемые для получения металлов

    Самый распространенный из металлов в природе - алюминий, Он содержится в земной коре в виде многообразных по составу и строению алюмосиликатов. Для получения алюминия главным образом используют бокситовую руду.

    Свинец и висмут находятся в природе в виде сульфидов. Олово получают из природного оксида SnO 2 (минерал касситерит).

    Me Х Ме Минералы, используемые для промышленного получения металлов Масс.% Me в земле
    Al Бокситовая руда содержит: гидратированные оксиды: AlOOH - бемит и диаспор и Al(OH) 3 - гидраргелит (гиббсит) и байерит, оксид Al 2 O 3 - корунд, а также гидратированные оксиды железа (+3), а силикаты, алюмосиликаты и оксид кремния. 8,1
    Sn +4 Касситерит SnO 2
    Pb +2 Галит PbS
  • Минералы металлов р-блока. Касситерит. Гиббсит. Гидраргилит

  • Типы минералов, используемых для получения d-металлов

    группа 3 4 5 6 7 8 9 10 11 I2
    металл
    Sc Ti V Cr Mn Fe Co N i Cu Zn
    Х в природных соединениях 3 4 3, 4, 5 3, 6 4, 2, 3 3, 2 2 2 2, 1 2
    Типы основных минералов Силикаты оксиды Ванадаты оксиды оксиды оксиды
    Сульфиды
    Сульфиды Сульфиды
  • Минералы, используемые для промышленного получения металлов d-блока

    Me Х Ме Минералы, используемые для промышленного получения металлов Масс.% Me в земле
    Sc +3 Sc 2 Si 2 O 7 , ScPO 4 . 2H 2 O 6.10-4
    Ti +4 Рутил TiO 2 , ильменит FeO.TiO 2 ºFe(TiO 3),
    титаномагнетиты Fe(TiO 3) . nFe 2 O 3 , перовскит Ca(TiO 3)
    0,57
    V +4,+5 Патронит VS 2 , ванадинит Pb 5 (VO 4) 3 Cl 0,015
    Cr +3 Хромит FeО. Cr 2 O 3 0,008
    Mn +4, +3,+2 Пиролюзит MnO 2 , гаусманит Mn 3 O 4 , браунит Mn 2 O 3 , манганит MnOOH, родохрозит MnCO 3 0,1
    Fe +3,+2 Магнетит Fe 3 O 4 , Гематит Fe 2 O 3 , гетит FeOOH, сидерит FeCO 3 , пирит FeS 2 5,1
    Co +2 Линнеит Co 3 S 4 (CoS . Co 2 S 3), кобальтин CoAsS 0,004
    Ni +2 Петландит (Fe, Ni) 9 S 8 , никелин NiAs,

    Ревденскит (Ni, Mg) 6 Si 4 O 10 (OH) 8

    0,008
    Cu +2,+1 Халькопирит CuFeS 2 , халькозин Cu 2 S, ковеллин CuS, куприт Cu 2 O, Малахит (CuOH) 2 CO 3 º Cu(OH) 2 . CuCO 3 , азурит Cu(OH) 2 .2 CuCO 3 0,005
    Zn +2 Сфалерит ZnS, смитсонит ZnCO 3 , цинкит ZnO 0,08
    Mo +4 Молибденит MoS 2 0.0001
    W +6 Шеелит CaWO 4 , Fe(Mn) WO 4 вольфрамит 0.0001
    Cd +2 Гринокит CdS 0.00001
    Hg +2 Киноварь HgS 0, 000008
  • Похожие публикации