Интернет-журнал дачника. Сад и огород своими руками

Изделия порошковой металлургии. Методы порошковой металлургии Что изготавливают способом порошковой металлургии

Порошковая металлургия - метод производства металлических изделий, заключающийся в прессовании гранул порошков металлов, и последующим их спекании. Данное производство позволяет получать изделия с высокой точностью геометрических размеров, поэтому она является альтернативой другим технологиям формообразования изделий, например литью или штамповке. Также, при помощи порошковой металлургии возможно изготовление сплавов или готовых изделий со свойствами, которые невозможно достичь другими процессами производства. Так, например, при помощи порошковой металлургии можно получить сплавы компонентов, которые не растворяются друг в друге в расплавленном состоянии. При помощи данной технологии можно изготавливать твердые сплавы вольфрама, тантала, кобальта, которые другими способами получить достаточно сложно. Порошковая металлургия позволяет получать изделия сложной конфигурации или изделия с высокими или заданными свойствами тепло- и электропроводности.

Основные преимущества порошковой металлургии:

  1. Возможность создания сплавов трудносплавляемых материалов или сплавов, которых другими способами создать трудно
  2. Экономическая целесообразность применения порошковой металлургии. При данном способе производства, по сравнению с литьем и токарной обработкой, образуется гораздо меньше отходов.
  3. Высокая точность геометрических размеров за счет применения высокоточной оснастки при прессовании
  4. При помощи порошковой металлургии возможно получение сплавов с более высоким комплексом механических свойств по сравнению с литьём
  5. Высокая производительность процесса
  6. Широкий, а главное регулируемый диапазон получаемых свойств

Продукция порошковой металлургии применяется во всех областях техники: в машиностроении, приборостроении, горнодобывающей и нефтеперерабатывающей промышленности.

Технология порошковой металлургии

Технологический процесс изготовления изделий при помощи порошковой металлургии сводится к следующим этапам:

  1. Получение исходного сырья - порошков определенной степени дисперсности гранул
  2. Формовка порошков в пресс-формах под давлением. При формовке могут использоваться горячие и холодные способы
  3. Спекание порошковых материалов в термических печах. При проведении процесса обычно используются защитные и вакуумные среды различного давления

Недостатки порошковой металлургии

На сегодняшний день, уровень развития технологического оборудования достиг огромных высот, что устранило практически все препятствия на пути изготовления деталей методом порошковой металлургии. Несколько лет назад возникали проблемы при изготовлении крупногабаритных изделий и заготовок из порошков. Но эта проблема была решена с помощью применения современных изостатов. И на сегодняшний день, кроме высокой стоимости исходного сырья, недостатков порошковая металлургия не имеет.

Порошковая металлургия включает следующие основные группы технологических операций: получение исходных металлических порошков и приготовление из них шихты (смеси); компактирование порошков (или их смесей) в заготовки; спекание.

Получение. Порошки, используемые в порошковой металлургии, состоят из частиц размером 0,01-500 мкм. Получают порошки металлов (или их соединений) механическими и физико-химическими методами. К механическим методам относят измельчение твердых металлов или их соед. идиспергирование жидких металлов или сплавов. Твердые тела измельчают в мельницах с мелющими телами (барабанные вращающиеся, вибрационные, планетарные мельницы), ударного действия (вихревые, струйные, центробежные) и с вращающимися частями (аттриторы, дисковые, кавитационные, молотковые, роторные). При измельчении в мельницах хрупких материалов частицы порошка имеют осколочную форму, при измельчении пластичных материалов-чешуйчатую. Измельченные порошки характеризуются наклепом (изменением структуры и свойств, вызванным пластической деформацией) и, как правило, подвергаются отжигу.

Диспергирование, или распыление, жидких металлов и сплавов осуществляют струей жидкости или газа. При распылении водой под высоким давлением используют форсунки разных форм. Свойства распыленных порошков зависят от поверхностного натяжения расплава, скорости распыления, геометрии форсунок и других факторов. Распыление водой часто проводят в среде азота или аргона . Распылением водой получают порошки железа, нержавеющих сталей, чугунов, никелевых и др. сплавов. При распылении струи расплава газом высокого давления на размер частиц влияют давление газа, диаметр струи металла, конструкция форсунки, природа сплава. В качестве распыляющего газа используют воздух . азот, аргон, водяной пар . Распыление металла осуществляют также плазменным методом или путем разбрызгивания струи металла в воду. Такими способами получают порошки бронз, латуней, олова, серебра, алюминия и др. металлов и сплавов.

Физико-химические методы получения металлических порошков включают: восстановление оксидов металлов углеродом . водородом или углеводородсодержащими газами; металло-термические способы - восстановление оксидов, галогенидов или других соединений металлов др. металлами; разложение карбонилов металлов, металлоорганических соединений; электролиз водных растворов и расплавов солей. Порошки металлоподобных соединений получают теми же методами и, кроме того, синтезом из простых веществ.

Путем восстановления оксидов металлов производят порошки Fe, Co, Ni, W, Mo, Cu, Nb и других металлов. Частицы порошков имеют развитую поверхность. Разложением карбонилов металлов получают порошки Ni, Fe, W, Mo со сферической формой частиц. Электролиз водных растворов солей металлов применяют для приготовления порошков Fe, Cu, Ni, а электролиз расплавов солей - для получения порошков Ti, Zr, Nb, Та, Fe, U. В обоих случаях частицыпорошков имеют дендритную форму.

Компактирование. Цель компактирования порошков - получение полуфабрикатов (прутки, трубы, ленты) либо отдельных заготовок, по форме приближающихся к конечным изделиям. Во всех случаях после компактирования порошок из сыпучего тела превращается в пористый компактный материал, обладающий достаточной прочностью для сохранения приданной ему формы при последующих операциях.

Основные виды компактирования - одно- и двустороннее прессование в жестких металлических матрицах, прокатка, изостатическое прессование жидкостью или газом, мундштучное прессование, шликерное литье, высокоскоростное прессование, в т. ч. взрывное, инжекционное формование. Компактирование может осуществляться при комнатной температуре (холодное прессование, прокатка) и при высоких температурах (горячее прессование, экструзия, прокатка).

Уплотнение порошка при прессовании происходит в результате движения частиц друг относительно друга, их послед. деформации или разрушения. При относительно больших давлениях порошки пластичных металлов уплотняются в основном благодаря пластической деформации, порошки хрупких металлов и их соединений - в результате разрушения и измельчения частиц. Спрессованные заготовки из порошков пластичных металлов гораздо более прочны, чем из хрупких. Для увеличения прочности последних в порошок перед прессованием вводят жидкое связующее.

Б. ч. порошков, особенно при производстве массовых изделий простой формы, прессуется в жестких металлических матрицах (прессформах) с использованием таблетировочных, ротационных и других механических и гидравлических прессов-автоматов. После заполнения матрицы порошок прессуется под давлением одного или нескольких пуансонов.

Прессование прокаткой - это непрерывное формование заготовок из порошков при помощи валков на прокатных станах. Подача порошка в валки может осуществляться под действием силы тяжести или принудительно. В результате прокатки получают пористые листы, ленты, профили.

При изостатическом прессовании порошок или пористые заготовки помещают в оболочку и подвергают всестороннему обжатию. Процесс включает заполнение оболочки, ее вакуумирование и заделку, собственно изостатическое прессование и декомпрессию оболочки. Разновидности изостатического прессования - гидро- и газостатическое прессование, рабочими средами (передающими давление) в которых служат соотв. жидкости или газы. Гидростатическое прессование производят, как правило, при комнатной температуре; газостатическое - при высоких температурах. С помощью изостатического прессования получают изделия сложной формы с максимально равномерной плотностью по всему объему.

Формование заготовок из смесей порошка с пластификатором путем продавливания их через отверстие в мундштуке или фильеру наз. мундштучным прессованием. Оно позволяет получать длинные заготовки с равномерной плотностью из труднопрессуемых порошков хрупких металлов и соединений. Пластификатор обеспечивает достаточную вязкость смеси и прочность заготовки.

Шликерное литье формование изделий из шликеров, представляющих собой однородные концентрир. суспензии порошков, обладающие высокими агрегативной и седиментационной устойчивостью, хорошей текучестью. Основные разновидности шликерного литья - литье в пористые формы, литье из термопластичных шликеров (горячее литье) и формование электрофоретическим методом. При литье в пористые формы поток всасывающейся в поры жидкости увлекает за собой частицы порошка, которые оседают на стенках пор формы. Термопластичный шликер при обычных условиях состоит из порошка и твердого термопластичного связующего. Смесь нагревают до температуры, при которой связующее становится вязким, заполняют форму вязким шликером и затем охлаждают до затвердевания массы. При электрофоретическом методе формование происходит путем постепенного наращивания слоя из частиц шликера, перемещающихся под воздействием электрического поля к электроду - форме и осаждающихся на ней.

Высокоскоростное (динамическое, импульсное, ударное) прессование осуществляют путем высокоскоростной деформации порошка. К нему относят взрывное, гидродинамическое, магнитно-импульсное прессование, некоторые виды ковки и штамповки, прессование на быстроходных прессах, копрах, молотах.

Спекание. Конечная операция порошковой металлургии -спекание - заключается в термообработке заготовок при температуре ниже температуры плавления хотя бы одного из компонентов. Его проводят с целью повышения плотности и обеспечения определенного комплекса механических и физико-химических свойств изделия. На начальной стадии спекания частицы проскальзывают друг относительно друга, между ними образуются контакты, происходит сближение центров частиц. На этой стадии скорость увеличения плотности (усадки) максимальна, но частицы еще сохраняют свою индивидуальность. На следующей стадии пористое тело м. б. представлено совокупностью двух взаимно проникающих фаз - фазы вещества и "фазы пустоты". На заключительной стадии пористое тело содержит изолированные поры и уплотнение происходит в результате уменьшения их числа и размеров. Спекание многокомпонентных систем осложняется взаимной диффузией. В этом случае спекание может происходить и с образованием жидкой фазы (жидкофазное спекание).

Спекание, как правило, проводят в защитной (чаще всего инертные газы) или восстановительной (водород, углеводородсодержащие газы) средах, а также в вакууме. Нагрев изделий осуществляют в электропечах (вакуумных, колпаковых, муфельных, толкательных, конвейерных, проходных, шахтных, с шагающим подом и др.), индукционных печах, прямым пропусканием тока. Спекание и прессование могут быть совмещены в одном процессе (спекание под давлением, горячее прессование).

Материалы и изделия. Получаемые методами порошковой металлургии материалы называют порошковыми. Эти материалы условно подразделяют на конструкционные, триботехнические, фильтрующие, твердые сплавы, высокотемпературные, электротехнические, с особыми ядерными свойствами и др.

Из конструкционных порошковых материалов изготовляют детали машин, механизмов и приборов, например шестерни, фланцы, зубчатые колеса, седла и корпуса клапанов, муфты, эксцентрики, кулачки, шайбы, крышки, корпуса подшипников, детали насосов, различные диски, втулки и др. Основные требования к этим порошковым материалам - повышенные механические свойства и экономичность. Детали из конструкционных порошковых материалов подразделяют на ненагруженные, мало-, средне- и сильнонагруженные, а по типу материала - на основе железа или сплавов цветных металлов.

К триботехническим относятся антифрикционные материалы и фрикционные материалы. Оптимальные структуры анти-фрикционных материалов - тведрая матрица и мягкий наполнитель. Для создания такой структуры наиболее эффективен именно метод порошковой металлургии Получаемые этим методом антифрикционные изделия обладают низким и стабильным- коэффициентом трения, хорошей прирабатываемостью, высокой износостойкостью, хорошей сопротивляемостью схватыванию. Изделия из порошковых антифрикционных материалов являются самосмазывающимися. Твердая смазка (напр., графит, селениды, сульфиды) заключена в порах самого изделия. Антифрикционные порошковые материалы могут использоваться как для изготовления объемных элементов, так и в качестве покрытий, нанесенных на подложки. Характерный пример изделий из порошковых антифрикционных материалов - подшипники скольжения.

Фрикционные порошковые материалы используют в узлах, передающих кинетическую энергию. Эти материалы обладают высокой износостойкостью, прочностью, теплопроводностью, хорошей прирабатываемостью. Порошковые фрикционные материалы чаще всего состоят из металлических и неметаллических компонентов. При этом металлические составляющие обеспечивают высокую теплопроводность и прирабатываемость, а неметаллические (SiO 2 , A1 2 O 3 , графит и др.) повышают коэффициент трения и уменьшают склонность к заеданию.

Фильтры из порошковых материалов по сравнению с др. пористыми изделиями обладают рядом преимуществ: высокой степенью очистки при удовлетворительной проницаемости, высокими жаростойкостью, прочностью, сопротивлением абразивному износу, теплопроводностью и др. Фильтры изготовляют спеканием свободно насыпанных или спрессованных порошков бронзы, нержавеющей стали, никеля, титана, железа. Методы порошковой металлургии позволяют изготовлять фильтры с изменяемой и регулируемой пористостью, проницаемостью и степенью очистки. Фильтры, наряду с пористыми подшипниками, составляют главную часть пористых изделий из порошковых материалов. Методами порошковой металлургии изготовляют также пористые уплотнительные прокладки, антиобледенители, пламегасители, конденсаторы, пеноматериалы и «потеющие» материалы.

Изделия из порошковых твердых сплавов, состоящих из твердых тугоплавких карбидов и пластичного металлического связующего, получают путем прессования смесей порошков и жидкофазного спекания. Твердые сплавы подразделяются на содержащие WC (или его твердые растворы с др. карбидами) и безвольфрамовые (на основе TiC и др. тугоплавких соед.); они обладают высокой твердостью, прочностью, износостойкостью. Из твердыхсплавов изготовляют инструменты для резания металлов и др. материалов, штамповки, обработки давлением, для бурения горных пород. Свойства многих инструментов из твердых сплавов существенно улучшаются при нанесении на поверхность изделий тонких (толщиной в несколько мкм) покрытий из тугоплавких соединений.

К высокотемпературным порошковым материалам относят сплавы на основе тугоплавких металлов (W, Mo, Nb, Та, Zr, Re, Ti и др.). Эти сплавы применяют в авиации, электротехнике, радиотехнике и др.

Электротехнические порошковые материалы включают следующие основные группы: контактные (для разрывных и скользящих контактов), магнитные, электропроводящие и др. Разрывные контакты предназначены для многократного (до нескольких млн.) замыкания и размыкания электрических цепей. Их изготовляют из порошковых сплавов на основе Ag, W, Mo, Cu, Ni с добавками графита, оксидов Cd, Cu, Zn и др. Скользящие контакты изготовляют из порошковых сплавов на основе Cu, Ag, Ni, Fe с добавками графита, нитрида В, а также сульфидов (для снижения коэффициента трения); их применяют в электродвигателях, генераторах электрического тока, потенциометрах, токосъемниках и др. устройствах. Металлические магнитотвердые и магнитомягкие материалы изготовляют из порошковыхсплавов на основе Fe, Co, Ni, Al, SmCo 5 , сплава Fe-Nd-B. Магнитодиэлектрики представляют собой многокомпонентные композиции на основе смеси ферромагнитных порошков с вяжущими веществами, являющимися изоляторами (жидкое стекло, бакелит, шеллак, полистирол, разные смолы). Диэлектрик образует на частицах ферромагнетика сплошную изолирующую пленку достаточной твердости, прочности и эластичности, одновременно обеспечивая их механическое связывание. Ферриты изготовляют только методами порошковой металлургии Порошковые электропроводящие материалы и изделия из них разного назначения изготовляют в основном из меди, алюминия и их сплавов.

В ядерной энергетике порошковые материалы (В, Hf, Cd, Zr, W, Pb, РЗЭ и др. и их соединений) с особыми свойствами используют в качестве поглотителей, замедлителей, из них изготовляют регулирующие стержни, а также твэлы (с использованием порошков диоксида, карбида, нитрида U и порошков тугоплавких соединений других трансурановых элементов)

Лит. Шведков Е Л, Денисенко Э. Т., Ковенский И. И., Словарь-справочник по порошковой металлургии, К.. 1982; Кипарисов С. С., Либенсон ГА., Порошковая металлургия, 2 изд., М., 1980; Порошковая металлургия в СССР История. Современное состояние. Перспективы, под ред. И. Н Францевича и В. И. Трефилова, М., 1986; Порошковая металлургия и напыленные покрытия, под ред. Б. С. Митина, М., 1987 Ю В. Ленинский

Oпубликовано на сайте www.s-metall.com.ua

Порошковая металлургия – это отрасль техники, включающая изготовление порошков из металлов и их сплавов и получение из них заготовок изделий без расплавления основного компонента.

В настоящее время расширяется сфера применения порошковой металлургии в различных областях промышленности, совершенствуется ее технология. Относительно небольшие производственные расходы на получение изделий из порошковых материалов в сочетании с возможностью придания им заданных свойств, окончательной формы и размеров практически без проведения механической обработки выдвинули порошковую металлургию в ряд более эффективных и перспективных технологий. Эта технология успешно конкурирует с литьем, обработкой давлением, резанием и другими методами обработки металлов, дополняя или заменяя их.

Технологический процесс производства порошковых изделий заключается в получении порошка исходных материалов, состоящих из шихты, прессования порошков и спекания изделий. Каждая из указанных операций вносит свой существенный вклад в формирование исконных свойств порошковых изделий. На практике возможны отклонения от приведенной типовой технологической схемы получения порошковых материалов, которые могут выражаться в совмещении операций прессования и спекания (горячее прессование), спекания свободно насыпанного порошка (отсутствует операция уплотнения), проведении дополнительной обработки (калибрование, механическая и химико-термическая обработка) и др. Методами порошковой металлургии получают: твердые сплавы для изготовления режущего, бурового инструмента, а также деталей, подвергающихся интенсивному изнашиванию; высокопористые материалы для изготовления фильтров, используемых для очистки жидкостей от твердых включений, воздуха, газа, пыли и т.д.; антифрикционные материалы для производства подшипников скольжения, втулок, вкладышей и других деталей, работающие в тяжелых условиях эксплуатации; фрикционные материалы для получения деталей узлов трения сцепления и тормозных систем машин; жаропрочные и жаростойкие материалы для производства изделий, работающих в условиях высоких температур и в сильно агрессивных газовых средах; материалы сложных составов (псевдосплавы) для изготовления электрических контактов, которые получить другими способами невозможно; магнитные материалы для изготовления постоянных магнитов, магнитоэлектриков, ферритов и т. д.



Получение металлических порошков является важнейшей задачей технологического процесса изготовления деталей из порошковых материалов, от решения которой зависят их основные свойства.

В настоящее время существуют различные методы изготовления порошков, каждый из которых обеспечивает определенные характеристики.

Металлические порошки различаются как по размерам (от долей микрометра до долей миллиметра), так и по форме и состоянию поверхности частиц.

Все известные способы производства порошков условно разделяют на механические и физико-химические.

Механические методы получения порошков – дробление и размол, распыление, грануляция – характеризуются переработкой материалов в порошок практически без изменения их химического состава.

Физико-химические методы – восстановление, термическая диссоциация карбонильных соединений – отличаются тем, что получаемый порошок по химическому составу существенно отличается от исходного материала.

Одним из физико-химических методов получения порошков является восстановление оксидов и других соединений металлов.

Под восстановлением в порошковой металлургии понимают процесс получения металлов из их химических соединений путем отнятия неметаллической составляющей (кислорода и других элементов) при помощи восстановителя.

Металлические порошки характеризуются технологическими, физическими и химическими свойствами, основные из которых регламентируются ГОСТами и техническими условиями.

Под формованием заготовок из порошковых материалов следует понимать процесс получения заготовок требуемых форм и размеров, а также достаточной прочности для последующего изготовления из них изделий. Формование предполагает уплотнение порошка. Процесс уплотнения порошкового материала в отличие от деформирования компактного металла сопровождается значительным изменением объема прессуемого тела.

Приготовление шихты производят в мельницах, смесителях и др.

Для этого дозированные порции компонентов определенного гранулометрического и химического состава смешивают в указанных устройствах, добавляя в случае необходимости различные технологические присадки: пластификаторы, облегчающие процесс прессования; легкоплавкие присадки, улучшающие спекание; летучие вещества для получения изделий с заданной пористостью. При смешивании порошков материалов, резко различающихся по своим свойствам (например, железа и графита), в целях получения наиболее однородной смеси применяют добавки спирта, бензина, глицерина и др.

Уплотнение производят на гидравлических или механических прессах, давление прессования составляет 200 – 1000 МПа в зависимости от свойств порошка и назначения изделия. Детали пресс-форм выполняют из высокоуглеродистых легированных сталей (инструментальных сталей), твердых сплавов. Стойкость стальных пресс-форм составляет 1 – 50 прессовок, пресс-форм из твердых сплавов – до 500 тыс. прессовок.

Динамическое прессование – это формование заготовок с использованием импульсных нагрузок, отличающееся высокой скоростью их приложения. В качестве источника энергии используют: взрыв заряда взрывчатых веществ, импульсное магнитное поле, сжатый газ и т.д. Высокоскоростное прессование в настоящее время используется при изготовлении высокоплотных крупногабаритных заготовок из труднодеформируемых металлических порошков и порошков керамических материалов.

Операция спекания состоит в нагреве и выдержке заготовок при температуре, составляющей 0,7 – 0,8 от абсолютной температуры плавления основного компонента спекаемой композиции. Средняя продолжительность выдержки составляет 1 – 2 ч.

Различают спекание в твердой и жидкой фазах . Спекание в твердой фазе производится при температуре, меньшей температуры плавления компонентов смеси, при спекании в жидкой фазе – при температуре, превышающей температуру плавления одного или нескольких компонентов исходного материала. Спекание в жидкой фазе позволяет получать более плотные изделия за счет активизации капиллярных явлений, приводящих к закрытию пор.

При необходимости порошковые изделия подвергают отделочным операциям: калиброванию, обработке резанием, термической и химико-термической обработке, повторному спеканию, повторному прессованию.

Применение методов порошковой металлургии для изготовления изделий позволяет достигать высокой производительности труда и значительной экономии средств в народном хозяйстве страны. Экономия достигается за счет получения изделий высокой прочности, рационального использования металла, снижения его потерь, повышения качества изделий, создания новых прогрессивных деталей и др.

Если обычное изготовление деталей на металлорежущих станках сопровождается потерями до 20 – 80 % металла, связано с необходимостью выполнения большого числа технологических операций и значительными трудозатратами, то получение изделий методами порошковой металлургии отличается тем, что при числе операций 3 – S отходы металла составляют всего 5 – 10 %. Кроме того, производство порошковых изделий сосредоточено в основном на одном предприятии, не требует большого станочного парка и высокой квалификации рабочих. Изготовление деталей обычного состава методами порошковой металлургии дает возможность уменьшить по сравнению с обработкой резанием удельный расход металла в 3 – 5 раз, трудозатраты – в 2 – 8 раз, себестоимость изготовления деталей – в 1,5 – 3 раза и повысить производительность труда в 1,5 – 2 раза.

Многие изделия, изготовленные методами порошковой металлургии, обладают более высокими качествами, чем изделия, полученные традиционными методами. Так, стойкость инструмента из порошка быстрорежущей стали в 3 – 4 раза больше стойкости инструмента из литой стали.

Эффективность порошковой металлургии повышается в условиях массового производства изделий. Так, в массовом производстве при изготовлении 1 тыс. т деталей методами порошковой металлургии экономится около 1,3 млн. рублей, свыше 2000 т стали, высвобождается более 200 рабочих и 50 металлорежущих станков. С увеличением объема выпуска себестоимость снижается по сравнению с себестоимостью литых заготовок.

Метод получения различных материалов и деталей из металлических порошков путем их прессования и последующего спекания, минуя стадию плавления металла и литья, называется порошковой металлургией.

Технология изготовления деталей методами порошковой металлургии напоминает технологию керамического производства, поэтому продукцию порошковой металлургии нередко называют металлокерамикой.

Порошковая металлургия является одним из наиболее перспективных методов получения изделий, обладающих особыми свойствами – пористостью, высокой твердостью, тугоплавкостью и т. д. Порошковая металлургия имеет большие преимущества по сравнению с другими традиционными способами изготовления изделий, такими как литьё, штамповка, механическая обработка и др., так как позволяет получать совершенно готовые изделия либо детали с незначительно технологическим припусками.

Высокие технико-экономические преимущества метода порошковой металлургии перед другими способами производства (экономия металла, возможность замены цветных и дефицитных металлов менее дефицитными и более дешевыми без ущерба для свойств изделий, повышение производственности труда, получение материалов со специальными свойствами и т. п.) создали предпосылки для широкого применения порошковых материалов в различных областях техники, роста выпуска деталей и непрерывного расширения их номенклатуры.

В настоящее время получаемые методом порошковой металлургии металлокерамические изделия широко применяются в виде антифрикционных, фрикционных и конструкционных деталей, а также в виде фильтров, магнитов, электроконтактов, деталей специальной техники и т. д.


Порошковая металлургия во второй половине XX века стала одним из важнейших направлений науки и техники. Материалы и изделия, полученные методом порошковой металлургии, применяют практически в любой отрасли современной промышленности. Получать и применять некоторые виды порошков, а также применять горячую ковку порошковой массы люди умели ещё в бронзовом веке. Порошковая металлургия , как способ обработки металлов, зародилась в первой половине XIX века.

Возрождение интереса к порошковой металлургии было связано с развитием электротехники в начале бывшего века. Электроламповой промышленности требовались тугоплавкие материалы для нитей ламп накаливания, и возрождение порошковой металлургии вплотную связано с металлургией вольфрама. Решение этой трудоемкой задачи послужило началом к налаживанию производства самосмазывающихся подшипников, твердых сплавов, магнитных и электроконтактных материалов, конструкционных и многих других материалов.
Технология порошковой металлургии позволяет получать изделия с обычными свойствами из обычных материалов, но с лучшими технологическими показателями производства по сравнению с традиционными технологиями, поскольку является ресурсосберегающей и во многих случаях энергосберегающей технологией. В настоящее время порошковая металлургия развивается быстрыми темпами как в направлении совершенствования существующих и разработки новых технологических процессов, так и в направлении создания новых материалов. Расширение применения порошковых материалов в автопромышленности влечет за собой существенное снижение веса автомобилей. Наряду с изготовлением конструкционных сплавов на основе железа порошковую металлургию широко применяют для получения материалов на основе цветных металлов, например, пористых бронз для самосмазывающихся подшипников, керамик (оксиды алюминия и титана) для двигателей, изделий химической и медицинской промышленности, магнитных демпфирующих материалов и т.д. Порошковые материалы находят свое применение также в аэрокосмической технике.
Технология порошковой металлургии состоит из следующих основных этапов: получение металлического порошка или смеси порошков разнородных материалов, формования, спекания и дополнительной обработки порошковых материалов и изделий. На практике нередко встречаются отклонения от этой совокупности элементов технологии, так процессы формования и спекания могут быть совмещены в одной операции (например, при горячем изостатическом прессовании или самораспространяющемся высокотемпературном синтезе). Однако в любом варианте порошковой технологии неизменными остаются использование порошкообразного вещества в качестве исходного и применение нагрева при температуре ниже точки плавления основного компонента.

Крупномасштабное производство железного порошка для порошковой металлургии путем водородного восстановления измельченного губчатого железа началось в 1946г.
Успешное применение железных и стальных порошков для порошковой металлургии в качестве сырья для изготовления конструкционных деталей обусловлено рядом особых факторов. Самыми важными из них являются:

Текучесть порошка
-Насыпная плотность порошка
-Прессуемость порошка
-Прочность неспеченной прессовки
-Стабильность размеров изделия во время спекания.

Существует два основных процесса для получения железного порошка для порошковой металлургии:

Процесс производства губчатого железа и железного порошка с восстановлением высококачественной железной руды;
-Распыление мягкой стали с помощью водяных струй под большим давлением.
Губчатые железные порошки для порошковой металлургии отличаются стабильностью размеров во время спекания и, благодаря нерегулярной форме частиц, отличной прочностью неспеченной прессовки.

Высокая прочность спрессованной детали полученной методом порошковой металлургии до спекания, имеет большое значение при выталкивании из пресс-формы и обработки детали для предотвращения растрескивания, особенно когда речь идет об изделиях с низкой плотностью. На прочность неспеченого материала для порошковой металлургии сильное влияние оказывает форма железных частиц, тип и количество смазочного вещества (или других добавок), и плотность прессовки.

По прочности до спекания губчатые железные порошки для порошковой металлургии со своими частицами нерегулярной формы превосходят распыленные порошки, но у последних вполне достаточная прочность до спекания для изготовления деталей с высокой плотностью.

Порошковая металлургия - научно-техническая отрасль, объединяющая в себе разноплановые методы производства порошков на основе металлов и их сплавов, соединений металлообразного типа, готовых продуктов и полуфабрикатов из них, а также миксов из них с порошками неметаллической природы без применения технологии плавления применительно к базовым компонентам.

Человечество издавна занимается производством разнообразных металлических порошков и крицы за счет восстановления металлооксидов при помощи . К примеру, еще за три тысячи лет до Рождества Христова порошковое золото активно использовалось для декорирования всевозможных поверхностей. Мастера Древнего Египта и Вавилона задействовали некоторые приемы порошковой металлургии при изготовлении орудий из железа.

Начало современному периоду развития данной отрасли положил отечественный ученый Соболевский П.Г., который в сотрудничестве с Любарским В.В. в двадцатых годах девятнадцатого века разработал особый метод производства разнообразных изделий, используя платиновый порошок. После этого началось ускоренное развитие металлургии на основе порошков, поскольку она давала возможность создавать изделия с по-настоящему эксклюзивными свойствами, добиться которых иными способами было нельзя. Например, к этому числу можно отнести пористые подшипники или приспособления для фильтрации. Также стали появляться материалы, структура которых задается и материалы, в составе которых присутствуют металлы с оксидами, металлы с полимерами и т.д.

В порошковой металлургии весь объем выполняемых технологических операций можно разделить на следующие группы:

Получение базовых металлических порошков и их смешивание, в результате чего формируется ;
спрессовывание порошков или сделанных из них смесей, формирование заготовок;
спекание.

Получение

Применяемые в данной отрасли металлургии порошки включают в себя частицы, размер которых может колебаться в пределах от 1/100 до 500 мкм. Для их получения прибегают к механическим и физико-химическим методам. В первую категорию включают измельчение пребывающих в твердом состоянии металлов или металлоподобных соединений, а также диспергирование находящихся в жидком состоянии металлов и сплавов. Для дробления твердых материалов задействуют мельницы, оснащенные мелющими телами, вращающимися частями или функционирующими по ударному принципу. Характер исходного материала определяет форму получаемых путем дробления частиц: если он хрупкий, то частицы получаются осколочного вида, если пластичный – чешуйчатого. Пластическая деформация, которая характерна для раздробленных порошков, приводит к переформатированию присущих им свойств и структурному видоизменению.

Распыление (называемое также диспергированием) металлов и сплавов жидкой консистенции производят посредством струи жидкости или газа с применением форсунок различных форм. На свойства распыленных порошковидных веществ оказывает воздействие целый ряд факторов, включая поверхностное натяжение расплавленной массы, скорости, с которой осуществляется распыление, нюансов геометрии форсунок и прочего.

Распыление с применением воды нередко реализуется в азотной или аргонной среде. Таким способом происходит получение железных, никелевых и иных порошков. Если расплавленная масса распыляется за счет находящегося под значительным давлением газа, то частицы конечного продукта будут иметь различный размер в зависимости от показателей давления, поперечного сечения исходящей струи металла, нюансов строения форсунки, природных свойств сплава.

В роли газа для распыления может выступать как просто воздух, так и азот или аргон, а также водяной пар. Существуют и другие методы для распыления металла, в частности, плазменный, а также способ разбрызгивания металлической струи в воду. Задействуются данные способы в первую очередь при изготовлении , серебряных, оловянных и алюминиевых порошков.

В разряд методов физико-химической природы, задействуемых при получении металлических порошков, входит восстановление металлооксидов посредством воздействия на них углерода, водорода или газов с содержанием углеводородов. Существуют также металлотермические методы: восстановление оксидов, галогенидов и иных металлических соединений за счет воздействия на них другими металлами; расщепление карбонилов металлов и соединений металлоорганической природы; электролиз солевых расплавов и растворов на воде. Для получения порошков металлоподобных соединений, помимо вышеуказанных методов, прибегают к их синтезу из простых веществ.

Спрессовывание (компактирование)

Данная операция необходима для получения полуфабрикатов в виде прутков, труб, лент или отдельных заготовок, форма которых приближена к финальным изделиям. После прохождения через процедуру компактирования, сыпучий порошок преобразуется в компактный материал пористой структуры, прочность которого позволяет ему сохранять приданную форму в ходе дальнейших операций.

Базовыми методами спрессовывания являются:

Прессование с одной или двух сторон в специальных металлических матрицах;
изостатическое прессование за счет давления газа или жидкости;
прессование мундштучного типа;
прокатка;
шликерное литье;
прессование с высокой скоростью, включая взрывное;
инжекционное формирование.

Возможен вариант осуществления компактирования как при комнатной температуре, так и в условиях высокотемпературной среды.

При прессовании порошок уплотняется за счет того, что его частицы смещаются по отношению друг к другу и впоследствии деформируются либо разрушаются. Применение достаточно большого давления при работе с порошками пластичных металлов позволяет добиваться уплотнения главным образом за счет пластической деформации, а при работе с хрупкими металлами и их соединениями – за счет разрушения и дробления частиц. Более высокой прочностью отличаются порошки, получаемые их пластичных металлов, а для придания необходимых прочностных характеристик порошкам из хрупких металлов дополнительно используют специальные связующие жидкие компоненты.

В массовом производстве наиболее востребовано прессование порошков в жестких матрицах (прессформах) из металла, для чего используются таблетировочные, ротационные и иные пресс-автоматы с механическим или гидравлическим принципом действия.

Компактирование прокаткой подразумевает формирование заготовок в непрерывном режиме в прокатных станах, оснащенных валками. В валки порошок ссыпается сам либо подается принудительным способом. Прокатка позволяет получать листы, профили и ленты пористой структуры.

Технология изостатического прессования предполагает помещение порошка или пористых заготовок в специальную оболочку с последующим ее , после чего материал сжимается со всех сторон. В завершение производят декомпрессию оболочки. Изостатическое прессование, в зависимости от типа используемой рабочей среды, подразделяется на гидро- и газостатическое. Первый вариант в большинстве случаев осуществляется в условиях комнатной температуры, тогда как для второго необходимы высокие температуры. За счет изостатического прессования удается получать изделия, отличающиеся сложной формой, и имеющие предельно однородную плотность по всему объему.

Мундштучное прессование получило свое название в связи с тем, что при данном способе порошок, смешанный с пластификатором, продавливается сквозь отверстие в мундштуке. Причем в данном случае в качестве основы, вполне могут использоваться сложнопрессуемые порошки, произведенные из хрупких металлов. Результатом подобной обработки становится получение длинных заготовок, имеющих однородный состав и равномерную плотность.

Шликерное литье – метод порошковой металлургии, подразумевающий изготовление изделий из так называемых шликеров – однородных концентрированных порошковых суспензий, которым присуща высокая агрегативная и седиментационная устойчивость, хорошая текучесть.

Различают следующие виды шликерного :

Литье в формы пористой структуры, при котором частицы порошка увлекаются жидкостью в поры, где затем и оседают;
горячее литье, предполагающее нагревание смеси из порошка с твердым связующим веществом до температуры, при которой данное вещество приобретает вязкую консистенцию. В таком состоянии данная смесь заливается в формы, после чего охлаждается до затвердевания;
формирование электрофоретическим методом, при котором происходит формирование изделия за счет постепенного наращивания слоя из шликерных частиц, которые изменяют свое местоположение под влиянием электрического поля, смещаясь к форме-электроду и там осаждаясь.

Суть высокоскоростного прессования заключается в деформации порошка с высокой скоростью. Может быть взрывным, магнитно-импульсным, гидродинамическим и т.д.

Спекание

Финальной операцией изготовления изделий методом порошковой металлургии является спекание. Оно подразумевает заготовок в условиях, когда температура не достигает значения, необходимого для плавления, по крайней мере, одного из компонентов.

Данная процедура необходима для того, чтобы повысить плотность изделия и придать ему определенные механические и физико-химические свойства. Вначале спекания частицы проскальзывают друг по отношению к другу, между ними формируются контакты, центры частиц сближаются. В этот момент частицы еще обладают индивидуальностью, но плотность увеличивается максимально быстро. После этого тело одновременно пребывает в фазе вещества и фазе пустоты, а заканчивается все уплотнением за счет минимизации количества и размеров пор.

Для спекания в большинстве случаев используют защитную среду, представленную обычно инертными газами, восстановительную, в роли которой выступает водород или углеводородсодержащие газы, либо вакуум. Нагреваются изделия в электрических или индукционных печах либо за счет прямого пропускания тока.

Существует возможность совмещения в одном процессе спекания с прессованием: спекание, осуществляемое под давлением, горячее прессование.

Материалы и изделия

Технологии, задействуемые в порошковой металлургии, обеспечивают возможность изготовления специфических материалов, причисляемых к категории порошковых. Их классификация производится в зависимости от присущих им свойств, качеств и характеристик.

Материалы порошкового типа из разряда конструкционных служат для производства всевозможных деталей для приборов и машин с разноплановыми механизмами. Они обладают повышенной механической прочностью, и они достаточно экономичны.
Использование порошковых материалов для выпуска фильтров обусловлено тем фактом, что их можно наделить улучшенными по сравнению с иными пористыми материалами свойствами. В частности, для них характерна высокая очистительная способность при сохранении достаточной проницаемости, устойчивость к воздействию высоких температур, превосходная прочность, отличная теплопроводность, малоподверженность износу по абразивному типу.

Благодаря методам, которые задействуются в порошковой металлургии, могут быть получены фильтровальные изделия, имеющие изменяемую или регулируемую пористость, уровень проницаемости, а также степень очищения. Фильтры вместе с подшипниками пористой структуры входят в перечень основных видов пористых изделий, производимых из порошкообразных материалов.

Триботехнические материалы бывают антифрикционными и фрикционными. Первые характеризуются наличием твердой матрицы, внутри которой находится мягкотелый наполнитель. Методы порошковой металлургии обеспечивают возможность получения антифрикционных изделий, имеющих низкий и стабильный коэффициент трения, отличающихся качественной прирабатываемостью, незначительно изнашивающихся, сопротивляющихся схватыванию. Такие изделия относятся к категории самосмазывающихся, поскольку смазка помещается в их поры.

Антифрикционные материалы пригодны для производства разноплановых объемных элементов, го также отлично справляются с функцией покрытий, нанесенных на подложки. Одним из наиболее ярких примеров продуктов, изготовленных из материалов данного класса, являются подшипники скольжения.

Фрикционные материалы порошкового типа находят применение в узлах, служащих для передачи кинетической энергии. Для данных материалов характерна высокая износоустойчивость, отличные прочностные характеристики, они хорошо проводят тепло и их несложно приработать. Как правило, в состав подобных материалов включаются компоненты металлической и неметаллической природы. Первые придают готовым изделиям высокую теплопроводность и прирабатываемость, тогда как вторые необходимы для повышения коэффициента трения и минимизации вероятности заедания.

Твердосплавные порошковые изделия имеют в своем составе тугоплавкие карбиды, соединенные с пластичными связующими металлической природы. Они изготавливаются за счет прессования порошковых смесей и жидкофазного запекания. Твердосплавные материалы, характеризующиеся высокими прочностными свойствами, отличающиеся твердостью и слабой изнашиваемостью, могут быть вольфрамосодержащими и безвольфрамовыми. Эти сплавы служат основой для производства инструментов, применяемых при резке металла, штамповке, воздействия давлением, бурения горных пород.

Для улучшения свойства таких инструментов нередко дополнительно на их поверхность наносят покрытии из тугоплавких соединений.

Категория электротехнических материалов порошкового типа подразделяется на несколько групп: контактные, электропроводящие, магнитные и прочие. Контактные материалы позволяют создавать такие контакты, которые способны переносить до нескольких миллионов замыканий и размыканий электроцепей. Также существуют варианты контактов скользящего типа, которые задействуются при изготовлении электродвигателей, генераторов, потенциометров, токосъемников и прочих устройств.

В основе высокотемпературных материалов, получаемых методами порошковой металлургии, лежат сплавы из тугоплавких металлов (

Похожие публикации