Интернет-журнал дачника. Сад и огород своими руками

Основные причины поражения человека электрическим током. Основные причины поражения электрическим током в быту. От чего зависят степени поражения электрическим током

Электробезопасность.

Основные причины поражения человека электрическим током:


  • Нарушение изоляции или потеря изолирующих свойств;

  • Непосредственное прикосновение или опасное приближение к токоведущим частям, находящимся под напряжением;

  • Несогласованность действий.
Действие электрического тока на живую ткань носит разносторонний и своеобразный характер, их несколько:

  1. Термическое действие: возможны ожоги отдельных участков тела, нагрев до высоких температур кровеносных сосудов, нервов, сердца, мозга и других органов, что вызывает в них серьезные функциональные изменения. Согласно закону Джоуля-Ленца количество выделившейся теплоты прямо пропорционально квадрату силы тока, сопротивлению тела человека и времени воздействия.

  2. Электролитическое действие выражается в распаде молекул крови и лимфы на ионы. Изменяется физико-химический состав этих жидкостей, что приводит к нарушению жизненного процесса.

  3. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови.

  4. Биологическое действие – возбуждение живых тканей, вызывающее судорожное сокращение и нарушение внутренних биоэлектрических процессов.
Различают два вида поражения:

  1. Местные электротравмы, вызывающие локальные повреждения организма.

  1. Электрический ожог – самая распространенная электротравма:
два типа – токовый (или контактный), возникающий при прохождении тока через тело человека в результате контакта с токоведущими частями, контактный ожог чаще всего возникает при напряжении не более 2000 Вольт;

– дуговой ожог возможен при различном напряжении. В результате электродугового поражения при прохождении через тело человека возможен летальный исход.


  1. Электрические знаки – резко очерченные пятна серого или бледно-желтого цвета на поверхности тела человека, подвергшегося действию электрического тока.

  2. Металлизация кожи возникает в случае проникновения в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги.

  3. Механические повреждения – следствие резких непроизвольных сокращений мышц под действием тока (разрыв сухожилий, кожи, сосудов, иногда возможны вывихи и переломы).

  4. Электроофтальмия – воспаление роговицы и конъюнктивы глаза под действием ультрафиолетовых лучей от электрической дуги.

  1. Общие электротравмы приводят к поражению всего организма, они делятся на четыре степени:
I – судорожные сокращения мышц;

II – судорожные сокращения мышц с потерей сознания;

III – потеря сознания с нарушением функций дыхания и сердечной деятельности;

IV – клиническая смерть (отрезок времени с момента остановки сердца и дыхания до начала гибели клеток головного мозга порядка 4 – 6 минут, в этот период человеку можно оказать помощь)

Факторы, влияющие на опасность поражения током:


  1. Основным поражающим фактором является сила тока, чем больше ток, тем опаснее его воздействие.
Для характеристики воздействия установлены три пороговых значения:

  • Пороговый ощутимый ток 0,5 – 1,5 мА для переменного тока 50 Гц и 5 – 7 мА для постоянного – минимальная величина тока, вызывающего болевые ощущения (зуд, покалывание).

  • Пороговый не отпускающий 8 – 16 мА 50 Гц и 50 – 70 мА 0 Гц – минимальная величина тока, при которой судорожное сокращение мышц руки не позволяет человеку самостоятельно освободиться от токоведущих частей.

  • Пороговый фибриляционный 100 мА 50 Гц и 300 мА 0 Гц – вызывает фибрилляцию сердца – хаотические разновременные сокращения сердечной мышцы, при которых прекращается кровообращение.

  1. Сопротивление тела человека складывается из сопротивления кожи и внутренних органов, при чем:
Rкожи = 3000 – 20 000 Ом,

Внутренних органов Rвн = 500 – 700 Ом,

Rч = 2Rн + Rв

Сопротивление кожи зависит от ее состояния: сухая – влажная, нет ли повреждений, загрязнений, времени и плотности контакта.


  1. Длительность воздействия.

  2. Путь, род и частота тока.

  3. Индивидуальные особенности человека (возраст, психологические, физические).

  4. Условия окружающей среды.
Классификация помещений по степени опасности электропоражений.

Безопасность обслуживания электрооборудования зависит от факторов окружающей его среды. С учетом этих факторов все помещения делятся на три класса:


  1. Первый – без повышенной опасности (сухие, без пыли, с нормальной температурой, с изолирующими полами, влажность до 70%).

  2. Второй – помещения с повышенной опасностью характеризуются одним из следующих признаков: относительная влажность > 75%, наличие токопроводящей пыли, наличие токопроводящих полов, высокая температура воздуха (> 30, периодически > 35 и кратковременно > 40), возможность одновременного прикосновения человека к металлическим частям электроустановок и к металлоконструкциям, соединенным с землей.

  3. Третий – помещения особо опасные: наличие влажности близкой к 100%, наличие химической агрессивной среды, наличие одновременно двух и более признаков помещений с повышенной опасностью.
Электроустановки классифицируют по напряжению на две группы:

  1. Электроустановки с номинальным напряжением до 1000 В.

  2. Электроустановки с напряжением свыше1000 В.
Электротехнические изделия по способу защиты человека от поражения электрическим током делят на пять классов: 0; 01; I; II, III.

Класс 0 – изделия с номинальным напряжением более 42 В с рабочей изоляцией и не имеющие приспособлений для заземления или зануления (бытовые приборы).

Класс 01 – изделия с рабочей изоляцией и элементом заземления (зануления).

Класс I – изделия с рабочей изоляцией, элементом заземления и проводом питания с заземляющей (зануляющей) шиной.

Класс II – изделия, имеющие у всех доступных прикосновению частей двойную или усиленную изоляцию.

Класс III – изделия без внутренних и внешних электрических цепей с напряжением выше 42 В.

Поражение током является следствием одновременного прикосновения человека к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения зависит от особенностей цепи и схемы включения в нее человека, определив силу тока с учетом этих факторов, можно с большой степенью точности выбрать защитные меры.

Возможные схемы включения человека в электрическую цепь:


  1. Двухфазное включение – более опасное, чем однофазное, т.к. к телу прикладывается наибольшее в данной сети напряжение – линейное: J = Uл/Rч,
где Uл – линейное напряжение (В);

Rч – сопротивление тела человека (Ом), при расчетах принимают 1000 Ом.


  1. Однофазное включение – на ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения: Jч = U/(2Rч + r),
где U – напряжение в сети (В);

R – сопротивление изоляции (Ом).

Или: Jч = U/R0; R0 – сопротивление обуви; сопротивление пола; сопротивление изоляции проводов; сопротивление тела человека.

Напряжение прикосновения – возникает в результате касания находящихся под напряжением электроустановок.

Uпр = * (ln – ln ) * α,

где – сила тока замыкания на землю (А);

ρ – удельное сопротивление основания пола (Ом * м);

L и d – длина и диаметр заземлителя (м);

X – расстояние от человека до точки заземления (м);

α – коэффициент напряжения прикосновения.

Шаговое напряжение – напряжение на тело человека при положении ног в точках поля растекания тока с заземлителем или от упавшего на землю провода.

При движении человека к источнику электрического поля или от него длину шага принимают в расчетах равную 0,8 м.

Максимальное значение напряжения в точке замыкания электрического тока на землю и по мере удаления от нее снижается. Считается, что на расстоянии 20 м от места замыкания потенциал равен нулю.

X – расстояние человека от точки замыкания;

A – длина шага;

ρ – удельное сопротивление грунта.

Следовательно, выходить из зоны действия напряжения необходимо как можно более короткими шагами.

Защитные меры от поражения электрическим током:


  1. Организационные мероприятия

  • Подбор персонала;

  • Обучение правилам электробезопасности, проведение аттестаций;

  • Назначение ответственных лиц;

  • Проведение периодических осмотров, измерений и испытаний электрооборудования.

  1. Применение индивидуальных защитных средств

  • Основные изолирующие защитные средства (диэлектрические перчатки, изолированный инструмент);

  • Дополнительные защитные средства (диэлектрические коврики и подставки);

  • Вспомогательные приспособления (экраны, монтерские и т.д.).

  1. Технические мероприятия

  • Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением.
По правилам заземляют все электроустановки, работающие при номинальном напряжении переменного тока более 50 В и постоянного более 120 В (кроме светильников, подвешенных в помещении без повышенной опасности на высоте не менее 2 м).

В качестве искусственных заземлителей применяют заглубленные в землю стальные трубы, уголки, штыри. К естественным можно отнести уложенные в землю водопроводные и канализационные трубы, кабели с металлической оболочкой.

Принцип действия заземления – снижение до безопасных значений напряжений прикосновения или шага в случае замыкания тока на металлические корпуса электрооборудования.

Учитывая, что сопротивление тела человека намного больше сопротивления заземляющего устройства, основной ток в случае замыкания пройдет через заземлитель.

Есть недостатки:


  1. Часть тока пройдет через тело человека.

  2. В случае нарушения в цепи заземляющего устройства опасность поражения током резко возрастает. По нормам сопротивление заземляющего устройства проверяют не реже 1 раза в год, в особо опасных помещениях – не реже 1 раза в квартал.
Зануление – это преднамеренное соединение с нулевым защитным проводником металлических нетоковедущих частей электрооборудования, которые могут оказаться под напряжением.

Принцип действия защитного зануления заключается в превращении замыкания на корпус в однофазное замыкание (между фазным и нулевым защитным проводником) с целью создания большого тока, способного обеспечить срабатывание защитного отключающего устройства (предохранители, магнитные пускатели с тепловой защитой и пр.).

Для обеспечения автоматического отключения аварийного оборудования сопротивление сети короткого замыкания должно быть небольшим (около 2 ом).

Недостатки – лишение защиты электропотребителей при обрыве нулевого провода.

Защитное отключение – быстродействующее отключение электроустановок (до 1000 В) при возникновении в ней опасного поражения электрическим током.

Время срабатывания УЗО не превышает 0,03 … 0,04 с.

При уменьшении времени протекания тока через человека снижается опасность.

Основные причины несчастных случаев от воздействия электрического тока следующие.

1. Случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением.

2. Появление напряжения на металлических конструктивных частях электрооборудования — корпусах, кожухах и т. п. — в результате повреждения изоляции и других причин.

3. Появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки.

4. Возникновение шагового напряжения на поверхности земли в результате замыкания провода на землю.

Основными мерами защиты от поражения током являются: обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения; защитное разделение сети; устранение опасности поражения при появлении напряжения на корпусах, кожухах и других частях электрооборудования, что достигается применением малых напряжений, применением двойной изоляции, выравниванием потенциала, защитным заземлением, занулением, защитным отключением и др.; применение специальных защитных средств — переносных приборов и приспособлений; организация безопасной эксплуатации электроустановок.

Классификация помещений по опасности поражения током. Окружающая среда и окружающая обстановка усиливают или ослабляют опасность поражения током. С учетом этого «Правилами устройства электроустановок» все помещения делятся по степени опасности поражения людей электрическим током на три класса: 1 — без повышенной опасности; 2 — с повышенной опасностью и 3 — особо опасные.

Помещения без повышенной опасности — это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами, т. е. в которых отсутствуют условия, свойственные помещениям с повышенной опасностью и особо опасным.

Примером помещений без повышенной опасности могут служить обычные конторские помещения, инструментальные, лаборатории, а также некоторые производственные помещения, в том числе цехи приборных заводов, размещенные в сухих, беспыльных помещениях с изолирующими полами и нормальной температурой.

Помещения с повышенной опасностью характеризуются наличием одного из следующих пяти условий, создающих повышенную опасность:

сырости, когда относительная влажность воздуха длительно превышает 75%; такие помещения называют сырыми;

высокой температуры, когда температура воздуха длительно превышает +30° С; такие помещения называются жаркими;

токопроводящей пыли, когда по условиям производства в помещениях выделяется токопроводящая технологическая пыль (например, угольная, металлическая и т. п.), в таком количестве, что она оседает на проводах, проникает внутрь машин, аппаратов и т. п.; такие помещения называются пыльными с токопроводящей пылью;

токопроводящих полов — металлических, земляных, железобетонных, кирпичных и т. п.;

возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.

Примером помещения с повышенной опасностью могут служить лестничные клетки различных зданий с проводящими полами, складские неотапливаемые помещения (даже если они размещены в зданиях с изолирующими полами и деревянными стеллажами) и т. п.

Помещения особо опасные характеризуются наличием одного из следующих трех условий, создающих особую опасность:

особой сырости, когда относительная влажность воздуха близка к 100% (стены, пол и предметы, находящиеся в помещении, покрыты влагой); такие помещения называются особо сырыми;

химически активной среды, т. е. помещения, в которых по условиям производства содержатся пары или образуются отложения, действующие разрушающе на изоляцию и токоведущие части электрооборудования; такие помещения называются помещениями с химически активной средой:

одновременного наличия двух и более условий, свойственных помещениям с повышенной опасностью.

Особо опасными помещениями являются большая часть производственных помещений, в том числе все цехи машиностроительных заводов, испытательные станции, гальванические цехи, мастерские и т. п. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом.

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, размещением их на недоступной высоте, ограждением и др.

Защитное разделение сети. В разветвленной электрической сети, т. е. обладающей большой протяженностью, вполне исправная изоляция может иметь малое сопротивление, а емкость проводов относительно земли — большую величину. Эти обстоятельства являются крайне нежелательными по условиям безопасности, так как в таких сетях напряжением до 1000 В с изолированной нейтралью утрачивается защитная роль изоляции проводов и усиливается угроза поражения человека током в случае прикосновения его к проводу сети (или к какому-либо предмету, оказавшемуся под фазным напряжением).

Этот существенный недостаток может быть устранен путем так называемого защитного разделения сети, т. е. разделения разветвленной (протяженной) сети на отдельные небольшие по протяженности и электрически не связанные между собою участки.

Разделение осуществляется с помощью специальных разделительных трансформаторов. Изолированные участки сети обладают большим сопротивлением изоляции и малой емкостью проводов относительно земли, благодаря чему значительно улучшаются условия безопасности.

Применение пониженного напряжения. При работе с переносным ручным электроинструментом — дрелью, гайковертом, электрическим зубилом и т. п., а также ручной переносной лампой человек имеет длительный контакт с корпусами этого оборудования. В результате для него резко повышается опасность поражения током в случае повреждения изоляции и появления напряжения на корпусе, особенно, если работа производится в помещении с повышенной опасностью, особо опасном или вне помещения.

Для устранения этой опасности необходимо питать ручной инструмент и переносные лампы пониженным напряжением не выше 36 В.

Кроме того, в особо опасных помещениях при особо неблагоприятных условиях (например, работа в металлическом резервуаре, работа сидя или лежа на токопроводящем полу и т. п.) для питания ручных переносных ламп требуется еще более низкое напряжение — 12 В.

Наиболее частые случаи:

  • случайное прикосновение к токоведущим частям, находящимся под напряжением (оголенным проводам, контактам электроаппаратуры, шинам и т.д.);
  • неожиданное возникновение напряжения там, где в нормальных условиях его быть не должно;
  • появление напряжения на отключенных частях электрооборудования (по причине ошибочного включения, наведения напряжения соседними установками и т.д.);
  • возникновение напряжения на поверхности земли в результате замыкания провода с землей, неисправности заземляющих устройств и т.д.
  • поражение электрическим током человека, случайно оказавшегося под напряжением. Токи через тело человека порядка 0,05-0,1 А опасны, большие значения могут быть смертельны;
  • перегрев проводов или электрическая дуга между ними при коротких замыканиях, что приводит к ожогам человека или пожарам;
  • перегрев поврежденных участков изоляции между проводами токами, утечки через изоляцию, что может привести к самовозгоранию изоляции;
  • перегрев корпусов электрооборудования вследствие их перегрузки.

Для обеспечения безопасности необходимо:

исключить возможность прикосновения человека к токоведущим частям, что достигается заключением электрооборудования в закрытые корпусы и его отключением при ремонтах;

по возможности применять безопасные низкие напряжения до 36 В при пользовании переносным электрооборудованием;

поддерживать высокий уровень изоляции относительно земли;

снижать влияние емкости проводов;

использовать защитное заземление (заземляющий провод);

применять общесетевые аппараты защиты от утечек в сетях с глухим заземлением нейтрали.

В сети с занулением присоединение корпусов электрооборудования к отдельным заземлителям, не соединенным с нейтральным проводом, запрещено.

Действие электрического тока на организм человека

Действие электрического тока на организм человека проявляется в следующих видах: термическое, электролитическое, механическое, биологическое.

Термическое воздействие проявляется в виде токового и дугового ожогов.

Степени ожога: покраснение, появление пузырей, омертвение тканей, обугливание. При этом следует учитывать площадь поражения.

При поражении электрическим током человек может получить местные электротравмы либо электрический удар.

Местные электротравмы: ожог, металлизация кожи, электрические знаки, электроофтальмия.

Электролитическое воздействие проявляется в виде поражения внутренних органов вследствие электрохимических реакций в теле человека.

Механическое воздействие может быть прямым или косвенным. Прямое механическое воздействие проявляется в виде разрыва мышечных тканей и стенок кровеносных сосудов за счет превращения лимфы или крови в пар. Косвенное механическое воздействие проявляется в виде ушибов, вывихов, переломов при резких непроизвольных судорожных сокращениях мышц.

Биологическое воздействие проявляется в виде электрического удара - воздействия электрического тока на центральную нервную систему.

Электрический удар имеет несколько степеней:

легкая дрожь в суставах, слабая боль,

сильные боли в суставах,

потеря сознания и нарушение сердечной деятельности или дыхания,

потеря сознания и остановка сердца либо остановка дыхания,

потеря сознания, остановка сердца, остановка дыхания, т.е. состояние клинической смерти.

На степень поражения человека электрическим током существенно влияют: величина тока, длительность протекания тока через тело человека, путь протекания, состояние кожи.

По величине и действию тока на организм человека различают ток ощутимый и ток неотпускающий, при котором пострадавший не может самостоятельно разжать руку. Ощутимый ток - постоянный около 5 - 8 мА, переменный - порядка 1 мА.

Величина неотпускающего тока - порядка 15 - 30 мА. Токи более 30 мА считаются опасными.

Величина сопротивления тела человека в зависимости от внешних условий может меняться в широких пределах - от нескольких сотен Ом до десятков кОм. Особо резкое падение сопротивления наблюдается при напряжении до 40-50 В, когда сопротивление тела человека снижается в десятки раз. Однако при проведении расчетов на электробезопасность в сетях напряжением выше 50 В принято считать величину сопротивления тела человека 1000 Ом.

Длительность протекания тока и величина допустимого тока связаны эмпирической формулой

Чем меньше длительность протекания тока, тем больше величина допустимого тока. Если At =16 мс, то величина допустимого тока 30 мА.

Такая величина тока определяет требования к изоляции. Так, например, для сети с фазным напряжением 220 В сопротивление изоляции должно быть не менее

С 1879 года безопасность людей, работающих с электроэнергией, является злободневной темой. Именно тогда зарегистрирован первый случай гибели человека от воздействия электрического тока.

С тех пор количество пострадавших все время увеличивается. На основе печальной статистики созданы правила безопасности, каждый пункт в которых основан на чьей-то трагедии.

Электриков различных профессий готовят по нескольку лет училища, техникумы, институты и специализированные курсы. После этого выпускники заведений проходят стажировку на предприятиях энергетики, сдают многочисленные экзамены и тесты. Только после этого они допускаются к самостоятельной работе.

Однако, даже проработавшие много лет специалисты электрики с высшей пятой группой по технике безопасности из-за ошибок и невнимательности, иногда получают серьезные электротравмы.

К сожалению, простой человек не имеет такой теоретической подготовки и практики работы с электричеством. Да и знать всех тонкостей нашей профессии ему не надо. Но, соблюдать элементарные правила, которые, кстати, всем рассказывают со школьной скамьи и детского садика, просто необходимо.

Хочется, чтобы читатели статей этого сайта, стали активными проповедниками безопасного обращения с электрическими установками не только на производстве, но и в быту, среди своих близких. Слово специалиста, подкрепленное жизненными фактами, всегда хорошо запечатлевается в памяти и воспринимается с большим доверием, чем обычный текст. Оно никогда не может быть «лишним».

Человеческая психология быстро приспосабливается ко всему привычному: электричество окружает нас повсюду, облегчая жизнь, а неисправности в нем случаются редко, да и обычно причиняют мало вреда. Но, до определенной поры…

Поэтому расскажите своему окружению еще раз основные причины поражения людей электрическим током в быту. Будьте уверены: ваши слова уберегут близких от несчастного случая.

Что запрещено делать с электроприборами в быту

Поврежденные приборы

Любой электроприемник имеет слой изоляции. Она покрывает наиболее ответственные места провода даже несколькими слоями для того, чтобы исключить контакт человеческой кожи с потенциалом электросети. Но, небрежное обращение с электропроводкой, механическое воздействие на нее, перегревы от неправильных нагрузок или ослабленных контактов нарушают ее диэлектрические свойства.

Нельзя прикасаться к оголенному металлу провода, находящегося под напряжением или пользоваться выключателями, розетками и вилками с разбитыми корпусами. Это прямая предпосылка для получения электротравмы.

Чтобы исключить подобные случаи проводите периодические осмотры состояния всех приборов и электропроводки. А еще лучше проверять состояние ее изоляции замерами. Но это довольно опасное мероприятие и доверить его можно только специалистам.

Ремонтные работы

Все неисправное электрооборудование должно выводиться из работы для устранения поломок. А заниматься им может только подготовленный человек. Иначе последствия неквалифицированной починки могут быть непредсказуемы.

Бережное обращение с оборудованием

Нельзя разбирать подключенные в сеть электроприборы. Особенно аккуратно следует обращаться со шнуром электропитания. Недопустимо тянуть за него для того, чтобы подвинуть электроплитку, утюг или вытащить вилку из розетки.

Таким способом можно легко устроить короткое замыкание. Шнуры питания часто подвергаются скручиваниям, перегибам, натяжениям. нагреву. Внутри них могут возникнуть изломы и обрывы. Они способны нарушить хороший контакт, вызвать искрение, приводящее к возгоранию.

Необходимо бережно эксплуатировать свои электрические приборы.

Замена лампочек в светильниках

Каждый взрослый, не говоря о детях, должен знать, что заниматься ремонтом электооборудования, находящегося под напряжением, запрещено. Любое действие с электрическими приемниками необходимо выполнять при отключенном питании.

Часто люди получают травмы, когда вкручивают/выворачивают обыкновенные лампочки накаливания. Выключатель освещения при этом всегда должен быть отключен.

Металлическая резьба цоколя может заклинить в патроне, а крепление ее с колбой ослабнуть. В результате стеклянная часть провернется, внутренние нити подвода напряжения, выполненные из открытого металла, соприкоснутся между собой, создав короткое замыкание.

Контакт с корпусом приборов, подключенных к напряжению

В двухпроводной сети (фаза, ноль), эксплуатируемой , при пробое изоляции на корпусе появляется опасный для жизни потенциал. Если человек одной частью тела касается такого прибора (на рисунке показана посудомоечная машина), а другой — элементов конструкции здания, соединенных с землей (на картинке — трубопровод), то через его тело по этому пути потечет ток.

Для предотвращения получения подобных травм служат защиты, реагирующие на появление токов утечек. в такой электропроводке снизит поражающее действие тока, а в схеме, оборудованной защитным РЕ-проводником по системам TN-S или TN-C-S, предотвратит несчастный случай.

Правильное подключение к контуру заземления всех корпусов бытовых приборов, использование системы выравнивания потенциалов — залог предотвращения поражения жильцов током.

Длительная работа электроприборов

Современные холодильники, морозильники и некоторая бытовая техника предназначены для выполнения непрерывного технологичного цикла. Они для этого оснащены автоматическими системами управления.

Даже такие устройства могут поломаться и нуждаются в периодическом контроле со стороны хозяина. Сгоревшие электродвигатели, залитые водой полы или случаи затопления соседей снизу — яркие подтверждения этому.

За работающей техникой и электрическим оборудованием еще необходим досмотр со стороны человека.

Самоделки

Любим мы мастерить что-то своими руками. Сейчас очень просто найти множество советов о том, как сделать самодельный станок, обогрев, сварку…А хватает ли нам квалификации выполнить все это не только работающим, но и безопасным для эксплуатации? Наверняка не всегда.

Конструкции многих самодельных обогревателей не только пожароопасны, но способны создать электрическую травму.

Во всяком случае, перед вводом в работу самодельных электроприборов важно не только замерить сопротивление электрической изоляции, но и провести ее испытания. Этим занимаются специализированные электротехнические лаборатории.

Поддержание в исправном состоянии защит электропроводки

Во всех жилых помещениях при вводе в работу электрической схемы устанавливаются вводные щитки. В них, как правило, вмонтирован электросчетчик и защитные автоматы или предохранители.

Они должны поддерживаться в работоспособном состоянии. Особенно актуально это требование к старым домам в сельской местности, где еще можно встретить работающие, но морально устаревшие электрощитки с индукционным счетчиком и двумя пробковыми предохранителями. В них хозяева вместо промышленных плавких вставок устанавливают самодельные «жучки» — отрезки случайно подобранных проволок.

Часто их номиналы завышены: чтобы лишний раз не менять при перегорании. Именно по этой причине они не всегда быстро отключают возникшее короткое замыкание, а в отдельных случаях вообще не работают.

Это же требование относится к уставкам автоматических выключателей. Их подбор, настройка и проверка работоспособности — важный элемент электробезопасности.


Дети

Они всегда любознательны, подвижны, активно лезут во все доступные и даже запретные места. Таким способом они познают окружающий мир, осваивают его. Но всегда ли взрослый человек может уследить за поведением малыша, уберечь его от попадания под действия тока? Как избежать несчастных случаев?

Родителям надо учитывать возраст ребенка и его развитие. Детям до трех лет нужно исключить доступ к электроприборам элементами мебели, перегородками, ограждениями. Обязательно указать запретные зоны и внушить, что туда они не должны входить.

Все контакты электрических розеток надо закрыть диэлектрическими заглушками. Ведь малыши могут всунуть туда гвоздь, булавку или другой кусок металла.

Детям всех возрастов нужно настойчиво объяснять правила безопасного обращения с электричеством в быту и на улице. С этой целью для них написана масса книжек и снято много обучающих мультфильмов. Например, «Советы тетушки Совы».

Такие видеоуроки созданы специалистами с учетом специфики детской психологии. Они познавательны, хорошо запоминаются. Особенно тогда, когда родители дают попутные пояснения, а после совместного просмотра делятся комментариями, задают наводящие вопросы.

В заключение статьи хочется еще раз обратиться к электрикам: наверняка вы на основе собственного опыта знаете еще причины поражения электрическим током в быту. Делитесь ими со своими близкими людьми! Ваши советы всегда будут восприняты. Они помогут уберечь человека от получения электротравм.

Похожие публикации